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Abstract

A two-parameter transmuted geometric distribution is proposed as a new generalization of the

geometric distribution by employing the quadratic transmutation techniques of Shaw and Buckley.

The additional parameter plays the role of controlling the tail length. Distributional properties of

the proposed distribution are investigated. Maximum likelihood estimation method is discussed

along with some data fitting experiments to show its advantages over some existing distributions

in literature. The tail flexibility of density of aggregate loss random variable assuming the proposed

distribution as primary distribution is outlined and presented along with a illustrative modelling of

aggregate claim of a vehicle insurance data. Finally, we present a count regression model based

on the proposed distribution and carry out its comparison with some established models.
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1. Introduction

A random variable (rv) X follows the geometric distribution with parameter q, denoted

by G D(q) (see Johnson et al., 2005), pp. 210, equation (5.8)) if its probability mass

function(pmf) is given by

P(X = t) = pqt , t = 0,1,2, · · · ,0 < q < 1, p = 1−q (1)
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For the geometric distribution in (1) the cumulative distribution function (cdf) and sur-

vival function (sf) are respectively given by

FX(t) = 1−qt+1 and SX(t) = P(X ≥ t) = qt .

In last few decades, many generalizations of geometric distribution were attempted by

researchers by using different methods, for example, see Jain and Consul (1971), Philip-

pou et al. (1983), Tripathi et al. (1987), Makc̆utek (2008), Gómez (2010), Chakraborty

and Gupta (2015), Sastry et al. (2014) and references therein.

The transmutation, in particular the quadratic rank transmutation(QRT) method first

introduced by Shaw and Buckley in 2007 has been used by many researchers to generate

a large number of new distributions staring with suitable continuous baseline distribu-

tions (see Owoloko et al., 2015, Oguntunde and Adejumo, 2015 and Yousof et al., 2015

for details). It is an interesting way of generating a new and more flexible distribution

by adding an additional parameter (α) to a baseline distribution. The QRT method pro-

duces a new family distribution that can be seen as a mixture of the maximum and

minimum order statistics for a sample of size two from the baseline distribution and

also as a mixture of the baseline distribution and its exponentiated version with power

parameter two. The new family allows a continuum of distributions in the range of the

additional parameter (−1 < α < 1). This method is applicable to any type of baseline

distribution like symmetric, centred, and defined over Z; provides explicit expression of

the cdf, moments for new distribution through those of baseline distribution; and is suit-

able for simulation through the quantile function of the baseline distribution. Because of

the many properties possessed by the method a significant amount of work to develop

new flexible continuous distributions by transmutation method has been published in

the last few years. The motivation of the present article is to derive a more flexible ex-

tension of the geometric distribution by application of the QRT method. The choice of

QRT method is not just for its many attractive properties but also due to the fact that

so far there is no evidence of any attempt to use transmutation method to generate new

discrete distribution.

Accordingly, in this article an attempt is made to derive a new generalization of ge-

ometric distribution with two parameters 0 < q < 1 and −1 < α < 1 by using the QRT

method of Shaw and Buckley (2007), which is presented in Section 2. Some distribu-

tional properties like unimodality, generating function, moments, quantile function are

discussed in Section 3. A discussion on the maximum likelihood estimation (MLE) of

parameters is presented in Section 4. Finally, in Section 5, applications of the proposed

distribution in modelling aggregate claim size data, claim frequency data and in count

data regression are presented.
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2. A new generalization of geometric distribution

Here we first briefly discuss the QRT method and then propose the new transmuted

geometric distributon.

2.1. Quadratic rank transmutation

The general rank transmutation mapping proposed by Shaw and Buckley (2007) for

given pair of cdfs F1 and F2 having same support is defined as GR12(u) = F2

(

F−1
1 (u)

)

and GR21(u) = F1

(

F−1
2 (u)

)

where F−1(u) is the quantile function corresponding to the

cdf F(u). Both GR12(u) and GR21(u) map the unit interval in to itself. In particular, the

quadratic rank transmutation (QRT) mapping is defined by GR12(u) = u+αu(1− u).
This implies

F2

(

F−1
1 (u)

)

= u+αu(1−u) = (1+α)u−αu2 ⇒ F2(x) = (1+α)F1(x)−αF1(x)
2

A discrete rv Y with cdf FY (.) and pmf P(Y = y) is said to be constructed by the QRT

method of Shaw and Buckley (2007) by transmuting another discrete rv X with cdf FX(.)

and pmf P(X = x), if

FY (y) = (1+α)FX(y)−αFX(y)
2and (2)

P(Y = y) = (1+α−2αFX(y))P(X = y)+α(P(X = y))2

The distribution FY is then refereed to as the transmuted-FX . In particular, for α = 0 it

gives the parent distribution function FX(y), for α = −1, FX(y)
2 the distribution of the

maximum of two iid rvs with cdf FX(x), and for α= 1, 2FX(y)−FX(y)
2 the distribution

of the minimum of two iid rvs with cdf FX(x).

Mirhossaini and Dolati (2008), expressing the cdf in (2) as FY (y) = FX(y)(1+
+αF̄X(y)) where F̄X(y) = 1−FX(y), viewed it as a univariate counterpart of the Farlie-

Gumbel-Morgenstern family (see Drouet-Mari and Kotz (2001)) of bivariate cdf

HXY (x,y) generated from two independent univariate cdfs FX(x) and FY (y) by the for-

mula HXY (x,y) = FX(x)FY (y)(1+αF̄X(x)F̄Y(y)) ,−1 < α< 1.

Kozubowski and Podgórski (2016) in a very recent paper have shown that the trans-

muted-FX distribution can be seen as the distribution of maxima(or minima) of a ran-

dom number N of iid rvs with the base distribution FX(x), where N has a Bernoulli

distribution shifted up by one.
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More over by rewriting the cdf in (2) as

FY (y) =
1+α

2

(

2FX(y)−FX(y)
2
)

+
1−α

2
(FX(y))

2

it can be seen as a convex combination (finite mixture) of the cdfs of the maximum

and minimum of two iid rv following FX(.). This implies (FX(y))
2 ≤ FX(y)≤ 2FX(y)−

(FX(y))
2 since (FX(y))

2 ≤ 2FX(y)− (FX(y))
2. Therefore the transmuted-FX family pro-

vides a continuum of distributions over the range of the additional parameterα∈ (−1,1).

2.2. Transmuted geometric distribution

Suppose an rv X has G D(q) in (1). Then the cdf of the transmuted geometric rv Y will

be constructed as

FY (y) = (1+α)
(

1−qy+1
)

−α
(

1−qy+1
)2

= 1− (1−α)qy+1−αq2(y+1), y = 0,1,2, · · · ;0 < q < 1,−1 < α< 1.

and the corresponding pmf will then be given by

py = P(Y = y) = (1−α)qy(1−q)+α(1−q2)q2y, y = 0,1,2, · · · . (3)

where 0 < q < 1,−1 < α < 1. The distribution in (3) will henceforth be referred to as

the transmuted geometric distribution (T G D) with two parameters q and α. In short,

T G D(q,α).

Particular cases:

1. For α= 0, (3) reduces to G D(q) in (1).

2. For α=−1, (3) reduces to a special case of the exponentiated geometric distribu-

tion of Chakraborty and Gupta (2015) with power parameter equal to 2. This is

the distribution of the maximum of two iid G D(q) rvs.

3. For α = 1, (3) reduces to G D(q2) with pmf (1−q2)q2y, which is the distribution

of the minimum of two iid G D(q) rvs.

Remark 1 T G D(q,α) forms a continuous bridge between the distributions of the min-

imum to maximum in a sample of size two from G D(q).
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Figure 1: PMF plot of T GD(q,α) for different value of parameter.

3. Distributional properties

3.1. Shape of the T G D(q,α)T G D(q,α)T G D(q,α)

The graphs of the pmf of T G D(q,α) are plotted for various combinations of the values

of the two parameters q and α in Figure 1. When −1 < α< 0, the pmf is unimodal with

either zero or non-zero mode, while for 0 ≤ α< 1, the pmf is always a decreasing func-

tion with unique mode at Y = 0. The above assertions are mathematically established

later in Section 3.3. Moreover, the spread of T G D(q,α) increases with q and decreases

with α.

Furthermore, T G D(q,α) has at most a tail as long as G D(q) can be seen from the

pmf plots in the Figure 1 and also from the monotonicity of the ratio of the successive

probabilities(see theorem 1). The shortest tail occurs when α= 1.

3.2. Monotonicity

Here we briefly discuss some useful monotonic properties of T G D(q,α) and its direct

consequences.

Theorem 1 For 0 < α< 1 the T G D(q,α) distribution with pmf given in (3), the ratio

py/py−1, y = 1,2, · · · , forms a monotone increasing sequence.

Proof. Firstly, we have p0 6= 0, p1 6= 0 and 0 < α< 1. Now

Q(y) = py/py−1 =
(1−α)(1−q)qy+α(1−q2)q2y

(1−α)(1−q)qy−1+α(1−q2)q2(y−1)

= q

(

1+
α(1+q)qy

(1−α)

/

1+
α(1+q)qy−1

(1−α)

)
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further,

△Q(y) = Q(y+1)−Q(y) =
(1−q)2qy+1(1+q)(1−α)α

(q2(1−α)+α(1+q)qy)(q(1−α)+α(1+q)qy)

Since, for 0 < α < 1, Q(y) > 0, therefore py/py−1 forms a monotone increasing se-

quence for 0 < α< 1.

The following results follow as a consequence of Theorem 1. For 0 < α < 1,

T G D(q,α)

i. is infinitely divisible (see Warde and Katti, 1971).

ii. pmf is a decreasing sequence (see Johnson and Kotz, 2005 p.75), which in turn

indicates that, T G D has a zero vertex (see Warde and Katti, 1971). This fact was

also mentioned in Remark 3.

iii. is DFR(decreasing failure rate), which in turn implies IMRL(increasing mean

residual life).

iv. an upper bound for the variance of the T G D(q,α) can be obtained for 0 < α< 1

as

Var(Y )≥ p1

p0

=
q(1−α)+αq2(1+q)

1−α+α(1+q)

Corollary 1 For −1 < α < 0, T G D(q,α) distribution with pmf given in (3) is log-

concave.

Proof. The result follows from that fact that py/py−1, y = 1,2, . . . , forms a monotone

decreasing sequence for −1 < α< 0 that is py+1/py < py/py−1 ⇒ p2
y > py−1 py+1 ∀y.

The following results follow as a consequence of corollary 1: For −1 < α < 0,

T G D(q,α) distribution is

i. IFR (increasing failure rate), which in turn implies DMRL (decreasing mean resid-

ual life).

ii. Strongly unimodal.

iii. At most has a geometric tail.
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3.3. Mode

Theorem 2 T G D(q,α) is unimodal with a nonzero mode for −1<α<−(q(2+q))−1

provided that q > 0.414.

Proof. A pmf P(Y = y) with support y = 0,1,2, · · · , is uni modal if there exists a unique

point M( 6= 0), in the support of Y such that P(Y = y) is increasing on (0,1, . . . ,M) and

decreasing on (M,M+1, . . . ). M is then the unique mode of P(Y = y). Thus T G D(q,α)

will have a non zero mode if,

P(Y = 1)> P(Y = 0)

⇒ (1−α)(1−q)q+αq2(1−q2)> (1−α)(1−q)+α(1−q2)

⇒ (1−α)(1−q)2+α(1−q2)(1−q2)< 0

⇒ α<−(1−q)2/
(

(1−q2)2 − (1−q)2
)

=−1/(q(2+q)

But the condition −1 < α < −(q(2+q)−1
makes sense only if q(2+ q) > 1 which

implies q >
√

2−1 ∼= 0.414.

For example, with q = 0.8 non zero modes occur when −1 < α < −0.4464 as can be

clearly seen in the third plot of the pmfs in the Figure 1.

Remark 2 For q < 0.414, the condition of non-zero unimodality leads to α outside its

permissible range of −1 < α

Remark 3 For 0 ≤ α ≤ 1, the pmf is decreasing, and the mode occurs at the point 0.

This indicates the suitability of the proposed distribution for count data which feature,

relatively, a large number of zeros. Moreover the proportion of zeros in T G D(q,α) is

more(less) than that of G D(q) depending on α> (<)0.

3.4. An alternative derivation of the T G D(q,α)T G D(q,α)T G D(q,α)

Theorem 3 T G D(q,α) is the discrete analogue of the skew exponential distribution

of Shaw and Buckley (2007).

Proof. The pdf and cdf of the skew exponential distribution derived using the quadratic

rank transmutation (Shaw and Buckley, 2007) are respectively given by

fX(x) = (1−α)βe−βx+2αβe−2βx, x > 0,β > 0,−1 < α< 1

and

FX(x) = (1+α)(1− e−βx)−α(1− e−2βx)2, x > 0,β > 0,−1 < α< 1.
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Hence, the pmf of the discrete analogue (see Chakraborty, 2015, for a detail review

of various methods of construction of discrete analogues of continuous distributions.)

of X , Y = ⌊X⌋, where ⌊X⌋ is the floor function, is given by the formula P(Y = y) =

SX(y)− SX(y+ 1) = FX(y+ 1)−FX(y). On simplification, this reduces to the pmf of

T G D(q = e−β,α).

3.5. Generating functions

Theorem 4 The probability generating function (PGF) of T G D(q,α) is given by

GY (z) =
(1−q)(1−αq(1− z)−q2z)

(1−qz)(1−q2z)
, |q2z|< 1

Proof. It is known that the pgf E(zX) of X ∼G D(q) is equal to 1−q

1−qz
(see p. 215, Johnson

et al., 2005).

Therefore pgf of Y ∼ T G D(q,α) is given by

GY (z) = E(zY ) =
∞
∑

y=0

zyP(Y = y) =
∞
∑

y=0

zy
(

(1−α)(1−q)qy+α(1−q2)q2y
)

=
(1−q)(1−α)

1−qz
+

α(1−q2)

1−q2z

The result follows on simplification.

Remark 4 The other generating functions like characteristic function, moment gener-

ating function and cumulant generating function can be easily derived from the PGF by

using the results ΦY (z) = GY (e
iz), MY (z) = GY (e

z) and KY (z) = log(GY (e
z)) respec-

tively.

3.6. Moments and related measures

Here we derive various moments and related measures of T G D(q,α).

Theorem 5 The rth factorial moment of Y ∼ T G D(q,α) is given by

E
(

Y(r)
)

= (1−α)r!

(

q

1−q

)r

+αr!

(

q2

1−q2

)r

.

where Y(r) = Y (Y −1) · · · (Y − r+1)
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Table 1: Expressions for various measures of T G D(α,q).

S.No. Measures Expression

1 Mean E(Y )
q(1−α)+q2

1−q2

2 Variance V(Y )
q
(

1−α2 +q(1−α2 +q(1−α)+2)
)

(1−q2)2

3 Index of Dispersion (ID)
q
(

1−α2 +q(1−α2 +q(1−α)+2)
)

(1−q2)(q(1−α)+q2)

4 γthquantile (yγ)

⌊

log
(

α−1+
√

α2−2α(1−2γ)+1
)

−log(2α)

logq

⌋

−1

5 Median (y0.5)

⌊

log(α−1+
√
α2+1)−log(2α)
logq

⌋

−1

Proof. It is known that the rth factorial moment E(X(r)) of X ∼ G D(q) is given by

E
(

X(r)

)

= r!

(

q

1−q

)r

(4)

Therefore the rth factorial moment of Y ∼ T G D(q,α) using equation (3) is given by

E
(

Y(r)
)

= (1−α)(1−q)

∞
∑

y=r

y(r)q
y +α(1−q2)

∞
∑

y=r

y(r)q
2y (5)

The result then follows upon using (4).

Note 1. Alternatively, the above theorem can also be proved using the result E(Y(r)) =
dr

dzr GY (z)|z=1.

By using Theorem 5, the descriptive statistics mean, variance, index of dispersion quan-

tile functions as well as median are given in Table 1. However, we do not present the

expressions for skewness as well as kurtosis as they are quite gigantic, instead we present

3-D surface plot of these two measures in Figure 2(a) and 2(b). In Figure 2(a), the q-α

surface cuts the skewness surface at zero indicated in blue, hence T G D(α,q) possess

positive skewness above q-α surface and negative skewness below q-α surface. More-

over, if we look in Figure 2(b) horizontal q-α surface drawn at value 3 which never

intersect the kurtosis surface, indicating leptokurtic nature of T G D(α,q). Further, Fig-

ure 2(c) shows that the horizontal q-α surface cuts the ID surface at 1 indicating under or
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Figure 2: q-α surface plot of 2(a) Skewness, 2(b) Kurtosis and 2(c) Index of Dispersion of T GD(q,α).

over-dispersion for α ∈ (−1,0) or (0,1) respectively (see Remark 3). Finally skewness

and kurtosis of G D(q) is depicted in red curve on respective surfaces.

Remark 5 A random number Y ∼ T G D(q,α) can be drawn by first generating a uni-

form random number U in (0,1) and then using the method of inversion to get a sampled

observation Y by using result 4 of Table 1.

4. Maximum likelihood estimator

In this section, we focus on the maximum likelihood estimator (MLE), though other

estimators can also be derived easily, such as (i) sample proportion of 1’s and 0’s, (ii)

sample quantiles, (iii) method of moments.

For a sample (y1,y2, · · · ,yn) of size n drawn from T G D(q,α), the likelihood func-

tion is given by L =
n

∏
i=1

(

(1−α)qyi(1−q)+αq2yi(1−q2)
)

. Taking logarithms on both

sides gives the log-likelihood function as

l = logL = n log(1−q)+nȳlog(q)+
n
∑

i=1

log((1−α)+αqyi(1+q)) (6)

By differentiating (6) with respect to q and α and equating to 0, the following likelihood

equations are obtained.

∂ l

∂q
=− n

1−q
+

nȳ

q
+

n
∑

i=1

αqyi +αyi(1+q)qyi−1

1−α+α(1+q)qyi
= 0

∂ l

∂α
=

n
∑

i=1

(1+q)qyi −1

1−α+α(1+q)qyi
= 0
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Since the likelihood equations have no closed form solution, the MLEs q̂ and α̂ of the

parameters q and α can be obtained by maximizing the log-likelihood function using

global numerical maximization techniques. Further, the second order partial derivatives

of the log-likelihood function are given by

∂ 2l

∂q2
=− n

(1−q)2
− nȳ

q2
−

n
∑

i=1

(

α(1+q)(yi−1)yiq
yi−2 +2αyiq

yi−1

1−α+α(1+q)qyi

−
(

α(1+q)yiq
yi−1 +αqyi

1−α+α(1+q)qyi

)2
)

∂ 2l

∂q∂α
=

n
∑

i=1

(

(1+q)yiq
yi−1 +qyi

1−α+α(1+q)qyi
−
(

α(1+q)yiq
yi−1 +αqyi

)

((1+q)qyi −1)

(1−α+α(1+q)qyi)2

)

∂ 2l

∂α2
=−

n
∑

i=1

(

((1+q)qyi −1)2

1−α+α(1+q)qyi

)

The approximate Fisher information matrix can then be obtained as







∂ 2l

∂q2

∂ 2l

∂q∂α

∂ 2l

∂q∂α

∂ 2l

∂α2







q=q̂,α=α̂

(7)

where q̂ and α̂ are the MLEs of q and α respectively.

5. Application and data analysis

5.1. An actuarial application

In an actuarial context, non-life insurance companies are often interested in modelling

the aggregate claim of a portfolio of policies. Let Z j, j = 1,2, · · · be the rv denoting the

size or amount of the jth claim and Y be the rv denoting the number of claims. Then

the aggregate claim of that portfolio is defined as S =
Y
∑

j=1

Z j. Assuming that the claim

amounts Z j to be identically and independently distributed among themselves as well as

with claim frequency Y , the pdf of S can be obtained as gS(s) =
∞
∑

j=1

p j f ∗ j(s) where p j

denotes the probability of the jth claim (called the primary distribution) and f ∗ j(s) is

the j-fold convolution of f (s), the pdf of the claim amount (the secondary distribution).

For more details one can see Rolski et al. (1999), Antzoulakos and Chadjiconstantinidis

(2004), Klugman et al. (2008)) and the references therein.
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In the following theorem, we present the distribution of aggregate claim when the

primary distribution is T G D(q,α) and the secondary distribution is exponential with

mean (1/θ).

Theorem 6 If T G D(q,α) distribution is the primary distribution and the exponential

distribution with parameter θ > 0 is the secondary distribution, then the pdf of rv S =
Y
∑

j=1

Z j is given by

gS(s) =

{

(1−α)(1−q)+α
(

1−q2
)

for s = 0

(1−q)qθ
(

(1−α)e−(1−q)sθ+q(1+q)αe−(1−q2)sθ
)

for s > 0
(8)

Proof. Since the claim severity distribution follows an exponential distribution with pa-

rameter θ > 0, the j-fold convolution of the exponential distribution is a gamma distri-

bution with parameter j and θ, having density function

f ∗ j(z) =
θ j

( j−1)!
z j−1e−θz, j = 1,2, · · · ,

Hence, the pdf of the rv S is given by

gS(s) =
∞
∑

j=1

p j f ∗ j(s) =
∞
∑

j=1

θ j

( j−1)!
s j−1e−θs

(

(1−α)(1−q)q j+α
(

1−q2
)

q2 j
)

= (1−q)qθ
(

(1−α)e−(1−q)sθ+q(1+q)αe−(1−q2)sθ
)

where gS(s) has a jump at s = 0 with probability (1−α)(1−q)+α(1−q2).

Henceforth, we denote the distribution of S with T G D(q,α) as primary and expo-

nential as secondary distribution as C T G -E D(q,α,θ). Further, it is also well-known

that the mean of the aggregate rv is the product of the respective means of the primary

and secondary rvs, hence in our proposed model

E(S) =
q(1−α)+q2

1−q2

1

θ

We now compare the aggregate loss model as defined in (8) with the aggregate loss

model obtained by considering the geometric distribution as the primary distribution

and exponential as the secondary distribution for claim severity, hence the density of
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the compound geometric-exponential distribution CG -E D (see pp.152 of Tse, 2009) is

given as

gS(s) =

{

1−q1 for s = 0

(1−q1)q1θe−(1−q1)sθ for s > 0
(9)

with mean E(X) = 1−q1
q1

1
θ
.

It is a well known that in the case of reinsurance, the reinsurance company will be

interested in those aggregate claim models that are suitable for modelling extreme value.

In the following theorem we show that with the same mean and different parameter

values, C T G -E D(q,α,θ) captures heavy tail values as compared to C G -E D(q1,θ).

Theorem 7 With the same mean, C T G -E D(q,α,θ) has thinner (thicker) tail as com-

pared to C G -E D(q1,θ) for −1 < α< 0(0 < α< 1).

Proof. Without loss of generality, we consider θ = 1. By equating the means of C T G -

E D with C G -E D , we get

q(1−α)+q2

1−q2
=

1−q1

q1

which gives q1 =
1−q2

1+q(1−α)
.

We now compare the tail behaviour of two distributions by taking the limiting ratio (LR)

of their sf (see pp. 60, Tse, 2009):

LR = lim
t→∞

ḠCTG-ED(t)

H̄CG-ED(t)

where ḠCTG-ED(t) = q
(

(1−α)e−(1−q)t +αqe−(1−q2)t
)

and H̄CG-ED(t) = q(q+1−α)
1+q(1−α)

exp[− (1−q2)t
1+q(1−α) ] are respectively the sf of C T G -E D(q,α,θ) and C G -E D(q1,θ).

Substituting these values in LR, we obtain

LR = lim
t→∞

(

(1−α)e
αq(1−q)t
1+q(1−α) +αqe

− (1−α)q(1−q2)t
1+q(1−α)

)

Now observe that for −1 < α< 0, LR = lim
t→∞

ḠCTG-ED(t)
H̄CG-ED(t)

= 0.

⇒ C T G -E D has thinner tail then C G -E D .

whereas for 0 < α< 1, LR = lim
t→∞

ḠCTG-ED(t)
H̄CG-ED(t)

= ∞.

⇒ C T G -E D has thicker tail then C G -E D .
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CT G -E D

C G -E D

Figure 3: PDF of aggregate loss rv (compound geometric-exponential distribution in red dashed lines and

compound transmuted geometric-exponential distribution in blue lines) for different values of parameter q

and α.

Tail behaviour of C T G -E D and C G -E D distributions for different parameter val-

ues are presented in Figure 3.

5.1.1. Illustration: aggregate loss modelling

To illustrate the applicability and superiority of the proposed aggregate model compared

to other existing aggregate models such as Poisson-exponential, negative binomial-

exponential and geometric-exponential, in short X -exponential models having densities

indicated in Table 2, we consider a vehicle insurance data set of one-year vehicle insur-

ance policies taken out in 2004 or 2005. There are 67856 policies of which 4624 (6.8%)

had at least one claim. Table 3 gives some in-depth information about the claims fre-

quency (X ) and total claim(S) for the data set. Full access to this dataset is available on

the webiste of the Faculty of Business and Economics, Macquarie University, Australia

– see also Jong and Heller (2008). As the variability in total claim data is very high, we

scale these observations by scale factor 0.001, remembering the fact that scaling will not

effect the comparison, and apply the maximum likelihood method to estimate the param-

eters of aggregate model. The log-likelihood function for proposed C T G -E D(q,α,θ)

model is given as
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l =(n−m) log(θ(1−q)q)+m log
(

α
(

1−q2
)

+(1−α)(1−q)
)

+
∑

si>0

log
(

(1−α)e−θ(1−q)si +αq(q+1)e−θ(1−q2)si

)

where m is the number of policies having no claim, (n−m) is the number of policies

having at least one claim and n be the total number of policies. As we can see the

log-likelihood equations obtained from the log-likelihood function cannot help in deter-

mining the estimates of parameter, hence we make use of numerical techniques to search

global maximum of log-likelihood surface. We make use of FindMaximum function of

Mathematica software package v.10.0. The estimates and other comparative measures

such as log-likelihood value(LL), Akaike Information Criteria(AIC) are shown in Table

4. Based on the AIC value it can be claimed that the proposed C T G -E D(q,α,θ) model

gives the best fit for the vehicle insurance data among all the models considered.

Table 2: Density of X-exponential models.

S.No. distribution of X Density of aggregate rv.

1 Poisson gS(s) =















e−λ for s = 0

√

θλ
s

e−θs−λJ1

(

2
√
λθs
)

for s > 0

where, J1(.) is the modified Bessel function of first kind

2 Negative binomial gS(s) =















(1−q)r for s = 0

qθr(1−q)re−θs
1F1(r+1;2;θqs) for s > 0

where 1F1(.; .; .) is the confluent hypergeometric function

3 Geometric gS(s) =















1−q for s = 0

(1−q)qθe−(1−q)sθ for s > 0

Table 3: Descriptive statistics of the vehicle insurance dataset.

Number of claims Total claim amount

Mean 0.072 137.27

variance 0.077 1115769.69

Index of Dispersion 1.0734 8128.29

min 0 0

max 4 55922.1
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Table 4: Estimated value of parameters of X-exponential models.

S.No. Distribution of X Estimated parameter LL AIC

1 Poisson λ̂= 0.12057, θ̂ = 0.87832 −25699.3 51402.6

2 Negative binomial r̂ = 0.51168, q̂ = 0.1291, θ̂ = 0.55250 −24740.6 49487.2

3 Geometric q̂ = 0.06814, θ̂ = 0.53273 −24745.7 49495.4

4 Transmuted Geometric q̂ = 0.2313, α̂= 0.9147, θ̂ = 0.5693 −24702.0 49410.0

5.2. Count data modelling

In this section we demonstrate the utility of T G D(q,α) in count data modelling con-

sidering a real data set on the number of automobile insurance claims per policy in port-

folios from Great Britain and Zaire (Willmot, 1987). This data set contain 87% of zeros

as well as with variance to mean ratio 1.051 indicating the presence of over-dispersion

in the data set. Hence the proposed model is expected to provide adequate fit. Here

T G D(q,α) is compared with the following existing ones.

i. Negative binomial (N B) (Johnson et al., 2005).

ii. Poisson inverse Gaussian (Willmot, 1987) (P −I G ) with pmf defined as

P(X = x) =
1

x!

√

2φ

π
eφ/µφ− 1

4+
x
2

(

2+
φ

µ2

)
1−2x

4

K1
2−x

(
√

2φ+
φ2

µ2

)

where x = 0,1,2, . . . , φ,µ > 0 and Ka(.) is modified Bessel function of the third

kind.

iii. New discrete distribution (Gómez et al., 2011) (N D) with pmf

P(X = x) =
log(1−αθx)− log(1−αθx+1)

log(1−α)

where x = 0,1,2, . . . , α< 1,0 < θ < 1, and

iv. Zero distorted generalized geometric (Sastry et al., 2014) (Z DG G D) with pmf

P(X = x) =

{

1−qα+1 if x = 0

(1−q)qα+x+1 if x > 0

where 0 < q < 1,−1 < α< 1.
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Table 5: Fit of automobile claim data in Great Britain, 1968 (Willmot, 1987).

# claims Observed Expected frequency

Frequency N B P −I G N D Z DGG D T G D

0 370412 370438.99 370435 370413 370412 370412

1 46545 46451.28 46476.4 46538.3 46555.16 46546.7

2 3935 4030.50 3995.76 3942.39 3913.70 3929.19

3 317 297.82 307.67 318.57 329.00 323.23

4 28 20.09 23.12 25.64 27.76 26.53

5 3 1.28 1.74 2.06 2.38 2.38

Total 421240 421240 421240 421240 421240 421240

estimated p̂ = 0.338 φ̂= 0.338 α̂=−1.349 q̂ = 0.0845 q̂ = 0.0821

parameter r̂ = 0.131 µ̂= 0.131 θ̂ = 0.080 α̂=−0.146 α̂=−0.5121

χ2-statistic 9.15 2.74 0.71 0.72 0.31

df 3 3 3 3 3

p-value 0.03 0.43 0.87 0.87 0.96

lmax –171136.9 –171134.4 –171133.0 –171134.1 –171133.0

Table 6: SE, CI, and CL of estimated parameters for the data sets in Table 5.

Models Parameters ML Estimate S.E. CI CL

N B
r̂ 0.131 0.5684 (–0.983, 1.255) 0.2228

p̂ 0.338 0.0011 (0.336, 0.340) 0.0039

P −I G
φ̂ 0.338 0.0188 (0.3017, 0.3756) 0.0739

ν̂ 0.131 0.0005 (0.1306,0.1328) 0.0022

N D
α̂ –1.349 0.1120 (–1.5686, –1.1295) 0.4390

θ̂ 0.080 0.0018 (0.0768, 0.0840) 0.0071

Z DGG D
q̂ 0.0845 0.0011 (0.0817, 0.0863) 0.0046

α̂ –0.146 0.0051 (–0.1160, –0.1359) 0.0200

T G D
q̂ 0.0821 0.0011 (0.079, 0.0844) 0.0046

α̂ –0.5121 0.0236 (–0.558, –0.465) 0.0920

The data fitting results for the above four distributions in (i) to (iv) presented in

Table 5 are taken from the respective papers. From the findings of the data fitting pre-

sented in Table 5, to assess the fit of the competing models we first compare the expected

frequencies with the observed one for each model, which reveals that the T G D(q,α)

predicts most of the observed counts more closely than the other models. The χ2 statis-

tics and its p-values implies lack of fit for NB and also for PIG. The rest of the models

provides good fit, with T G D(q,α) being the best among the lot with highest with p-

value of 0.96. Moreover, we also compute standard error (SE), confidence interval (CI)

and confidence length (CL) for the parameter estimates. It can be clearly seen from

Table 6, that the SE of the estimates of proposed distribution is smaller compared to
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other distributions. Hence, it is envisaged that the proposed distribution may serve as

an alternative model for modelling data with a large proportion of zeros and over-

dispersion.

5.3. Count regression modelling including covariates

In this section, we present the count regression modelling assuming the discrete re-

sponse variable (Y ) as a function of a set of independent (exogenous) variables. Fur-

thermore, we also consider that the mean (θ) of response variable is related with the

set of exogenous variables by the positive valued function θ = θ(x). There are several

possible choices for the selection of function θ(x) and thus to ensure the non-negativity

of the mean of the response variable, we consider the log-link function as θi(x) = ex
T
iβββ ,

where xT

i = (xi1,xi2, · · · ,xip) and βββT = (β1,β2, · · · ,βp) be the set of covariates and their

coefficients. This selection of log-link function includes both random and fixed effects

on the same exponential scale. Further, to estimate the parameters, we use following

reparametrization

ν = 1−α and q =
(

−ν+
√

4θ+4θ2 +ν2

)

/2(1+ θ)

where θi(x) = exT
iβββ . The above re parametrization enable us to bring the regression co-

efficients (βββ) and parameters of the response variable into the log-likelihood functions.

The log-likelihood function for a random sample (yi,xi) of size n with count yi and a

vector xi of covariates for i = 1,2, · · · ,n can be written as

l (ν,θ|y,x) =
∑n

i=1 log

(

ν

(

1− −ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)yi

+(1−ν)



1−
(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)2




(

−ν+
√

4θi +4θ2
i +ν2

2(1+ θi)

)2yi





The parameters (ν,β1,β2, · · · ,βp) in the above log-likelihood function can be esti-

mated by maximizing the log-likelihood function for a given data set using the optim()

function in R (for more details one can browse https://stat.ethz.ch/R-manual/

R-devel/library/stats/html/optim.html), where the initial values of the parameters were

chosen from Poisson regression model.

In the next section we present an application of the proposed count regression model

to a real life data set and compare its performance with following popular regression

models:



Subrata Chakraborty and Deepesh Bhati 171

i. Poisson regression model

P(Yi = yi|µi) =
e−µiµyi

i

yi!
, yi = 0,1,2, ... (10)

where µi > 0. The regression model is obtained by putting µi = ex
T
iβββ .

ii. Generalized Poisson model (G P-2): The pmf of a generalized Poisson (G P-2)

regression model (Consul and Famoye , 1992, Yang et al., 2009) is given as

P(Yi = yi|θi,νi) =
µi (µi +φµiyi)

yi−1

(1+φµi) yiyi!
e

(

−µi+φµiyi
1+φµi

)

, yi = 0,1,2, ... (11)

where φ > 0 is dispersion parameter and µi = exT
iβββ in (11). For more details refer

Yang et al. (2009) and finally with

iii. Generalized Negative Binomial (N B-2) (Greene, 2008): The pmf of a general-

ized negative binomial (N B-2) regression model is given as

P(Yi = yi|θ,ri) =
Γ(θ+ yi)r

θ
i (1− ri)

yi

yi!Γ(θ)
(12)

where yi = 0,1,2, . . . and ri = θ/(θ+λi) and λi = ex
T
iβββ.

Table 7: Exploratory data description.

Variable Nature Measurement Mean Variance

of variable

OFP Response Number of physician visits 6.046 57.169

HOSP

E
x
p
la

n
at

o
ry

Number of days of hospital stays 0.297 0.513

POORHLTH Self-perceived health status, 0.13 0.113

poor =1, else =0.

EXCLHLTH Self-perceived health status, 0.071 0.066

excellent =1, else 0

NUMCHRON Number of chronic conditions 1.533 1.788

MALE Gender; male = 1, else =0 0.408 0.241

SCHOOL Number of year of education 10.355 13.25

PRIVINS Private insurance indicator, 0.794 0.164

yes =1, no = 0



172 Transmuted geometric distribution with applications in modelling and regression...

T
a
b
le

8
:

M
a
xi

m
u
m

li
ke

li
h
o
o
d

es
ti

m
a
te

s
o
f

th
e

p
a
ra

m
et

er
s

o
f

d
if

fe
re

n
t

re
g
re

ss
io

n
m

o
d
el

s.

P
ar

am
et

er
P

o
is

so
n

G
P

-2
N

B
-2

T
G

M

es
t.

(s
.e

)
t-

st
at

is
ti

c
p
-v

al
u
e

es
t.

(s
.e

.)
t-

st
at

is
ti

c
p
-v

al
u
e

es
t.

(s
.e

.)
t-

st
at

is
ti

c
p
-v

al
u
e

es
t.

(s
.e

.)
t-

st
at

is
ti

c
p
-v

al
u
e

In
te

rc
ep

t(
β

1
)

0
.9

9
(0

.0
4
)

2
7
.5

1
<

0
.0

0
0
0
1

0
.8

2
(0

.0
9
)

9
.1

2
0
.0

0
0
0
1

0
.8

8
(0

.0
9
)

1
0
.1

7
<

0
.0

0
0
0
1

0
.2

0
5

(0
.1

7
)

1
.2

0
7

0
.2

2
7
5
8

H
O

S
P
(β

2
)

0
.1

9
(0

.0
1
)

2
0
.3

9
<

0
.0

0
0
0
1

0
.2

8
(0

.0
4
)

6
.2

2
0
.0

0
0
0
1

0
.2

4
(0

.0
3
)

7
.1

4
<

0
.0

0
0
0
1

0
.0

9
0

(0
.0

4
)

2
.0

3
9
7

0
.0

4
2
4
9

P
O

O
R

H
L

T
H
(β

3
)

0
.2

1
(0

.0
3
)

8
.2

8
<

0
.0

0
0
0
1

0
.3

9
(0

.0
9
)

4
.5

3
0
.0

0
0
0
1

0
.3

1
(0

.0
7
)

4
.3

2
0
.0

0
0
0
1
5

–
1
.1

7
4

(0
.6

5
)

–
1
.8

1
0
6

0
.0

7
0
3
5

E
X

C
L

H
L

T
H
(β

4
)

–
0
.2

1
(0

.0
4
)

-4
.8

4
<

0
.0

0
0
0
1

–
0
.1

7
(0

.0
9
)

–
1
.8

0
.0

7
2
0
1

–
0
.1

8
(0

.0
1
)

-1
.9

2
0
.0

5
4
8
5
7

1
.1

3
2

(0
.1

1
)

1
0
.1

7
8
4

0
.0

0
0
0
1

N
U

M
C

H
R

O
N
(β

5
)

0
.1

6
(0

.0
1
)

2
4
.4

8
<

0
.0

0
0
0
1

0
.2

0
(0

.0
2
)

9
.5

4
0
.0

0
0
0
1

0
.1

9
(0

.0
2
)

1
0
.0

4
<

0
.0

0
0
0
1

0
.1

6
6

(0
.0

3
)

5
.7

3
8
3

0
.0

0
0
0
1

M
A

L
E
(β

6
)

–
0
.1

(0
.0

2
)

–
5
.3

1
<

0
.0

0
0
0
1

–
0
.1

3
(0

.0
5
)

-2
.5

4
0
.0

1
1
1
6

–
0
.1

2
(0

.0
5
)

–
2
.5

2
0
.0

1
1
8
1

0
.0

7
3

(0
.1

0
)

0
.7

4
3
9

0
.4

5
7
0
2

S
C

H
O

O
L
(β

7
)

0
.0

3
(0

.0
0
1
)

1
2
.1

9
<

0
.0

0
0
0
1

0
.0

4
(0

.0
1
)

5
.2

9
0
.0

0
0
0
1

0
.0

4
(0

.0
1
)

5
.2

9
<

0
.0

0
0
0
1

0
.0

6
9

(0
.0

2
)

3
.6

9
8
3

0
.0

0
0
2
2

P
R

IV
IN

S
(β

8
)

0
.1

5
(0

.0
2
)

5
.8

5
<

0
.0

0
0
0
1

0
.1

5
(0

.0
7
)

2
.2

7
0
.0

2
3
3
1

0
.1

4
(0

.0
6
)

2
.2

8
0
.0

2
2
7
1

0
.4

7
1

(0
.1

1
)

4
.2

6
4
6

0
.0

0
0
0
1

D
is

p
er

si
o
n

p
ar

am
et

er
—

—
0
.2

8
(0

.0
1
)

3
0
.0

8
0
.0

0
0
0
1

1
.1

6
(0

.0
4
)

2
5
.0

3
<

0
.0

0
0
0
1

0
.0

6
6
(0

.0
3
4
)

1
.9

0
6
4

0
.0

5
6
7
4

V
1
0
.6

7
3
6

–
1
.1

8
8
6
4
2

–
2
.2

8
3
8
3

—

l m
ax

–
8
8
1
3
.7

4
–
5
6
1
4
.7

2
–
5
6
0
7
.2

–
4
9
7
3
.1

A
IC

(−
2
l m

ax
+

2
k
)

1
7
6
4
3

1
1
2
4
7
.4

4
1
1
2
3
2
.3

9
9
9
6
4
.2

0
2



Subrata Chakraborty and Deepesh Bhati 173

5.3.1. A numerical illustration of count regression

We examine the US National Medical Expenditure Survey 1987/88 (NMES) data ob-

tained from Journal of Applied Econometrics 1997 Data Archive at http://qed.econ.

queensu.ca/jae/1997-v12.3/ deb-trivedi/, which were originally employed by Deb and

Trivedi (1997) in their analysis of various measures of health-care utilization. For illus-

tration purpose we consider the first 2000 observations for fitting the regression model.

The exploratory data description of the response variable as well as the set of explana-

tory variables is given in Table 7, from where it can be seen that the mean and variance

of the number of physician visit (OFP) variable indicates presence of the over-dispersion

as well as existence of large number of zeros. Hence it seems appropriate to apply our

model for the present data set with the number of physician visits (OFP) as the response

variable and remaining seven as explanatory variables.

Table 8 presents the maximum likelihood estimates of the parameters of the models

Poisson(P), negative binomial(N B-2), generalized Poisson (G P-2), and transmuted

geometric (T G M ), their standard errors, t-statistics and p−values.

For comparison between the different fitted models, we have used the value of the

maximum of the log-likelihood function (lmax) and the Akaike information criterion

(AIC). The model with the lowest AIC value is considered to be the best. It can be ob-

served that the estimates of all parameters except the parameters of POORHLTH, MALE

and dispersion parameter are found significant at 5% level of significance. Unlike the

other models considered here the number of physician visit has not been influenced by

the gender profile and poor health status of the patient. Most of the estimated parameters

values under the T G M model differs in values obtained under other competitive mod-

els. The estimate of dispersion parameter for T G M found significant at 5% level of

significance as opposed to G P-2 and N B-2 models which gives an indication of cap-

turing dispersion of data. Moreover, with respect to the values of lmax and consequently

AIC, our proposed model turns out to be the best. Hence, we conclude that proposed

T G M regression model gives satisfactory fit and can be considered suitable for count

data regression analysis.

Since the models under consideration namely P , N B-2, G P-2, are not nested

within T G M , it may of interest to employ the Vuong test (see Vuong (1989)) for non-

nested models to discriminate among these models. The Vuong statistic is given by

V =
1

ζ
√

n

(

lT G M (Θ̂1)− lg(Θ̂2)
)

(13)

where

ζ2 =
1

n

n
∑

i=1

(

log

(

fT G M (Θ̂1|yi,xi)

g(Θ̂2|yi,xi)

))2

−
(

1

n

n
∑

i=1

log

(

fT G M (Θ̂1|yi,xi)

g(Θ̂2|yi,xi)

)

)2

where fT G M and g represent T G M and the other competing model respectively.
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As statistic V ia asymptotically standard normal, the rejection of test in favour of

T G M occurs if V > 1.96, at the 5% level of significance . From our findings in Table

8, it is seen that the proposed T G M regression model is preferred over Poisson (since

V > 1.96), but do not distinguish between G P-2 model (since −1.96 < V < 1.96).

However the test rejects the T G M model when compared with N B-2 (since V <

−1.96).

6. Concluding remarks

In this paper the transmutation technique is used to offer a new flexible generalization

of the geometric distribution as a viable alternative to some existing models. Different

distributional properties of the distribution are found to be simple and attractive. The

theoretical result regarding possibility of applying this new distribution to model aggre-

gate claim in the actuarial context is presented and its suitability for modelling large

aggregate claims is established and complimented with a real life data set. Illustrative

data fitting with the proposed model for a popular data set from automobile insurance

sector having over-dispersion turned out to be very useful. Finally, a count regression

model based on the proposed distribution provided best fit in terms of the AIC value

when compared with some existing models for analysing a data set from the health sec-

tor. Based on these findings, it is envisaged that the transmuted geometric distribution

with two parameters can be very useful in modelling and analysis of count data of dif-

ferent types. Further, this idea of applying transmutation to discrete distribution may be

applied to construct new generalizations of other distributions.
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