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Abstract

The (|p)-centroid problem or leader-follower problem is generalized consideriteyeint
customer choice rules where a customer may use facilities belongin§eoedt firms if

the diference in travel distance (or time) is small enough. Assuming essential goods,
some particular customer choice rules are analyzed. Linear programming formulations for
the generalizedr[X,)-medianoid andr(p)-centroid problems are presented and an exact
solution approach is applied. Some computational examples are included.

Keywords: competitive location, bi-level problems]g)-centroid, ¢|X,)-medianoid,
leader-follower problem, linear programming

1. Introduction

The (|p)-centroid problem is a competitive location problem where two players, the
leader and the follower, enter the market sequentially and compete in providing goods and
services to customers. The leader enters the market firstpviitilities and seeks to
minimize the maximum market share captured by a future competitor, called the follower.
The follower opens facilities at the locations that maximize its market share. We consider
the case of essential goods, which means that demand has to be satisfied, and so customers
will visit at least one facility to obtain all the goods and services they need. As demand
is assumed to be essential, the objective of minimizing the maximum market share the
competitor can capture is equivalent to maximizing one’s own market share.
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The customer choice rule represents the behaviour of the customers. The binary rule
represents the “all or nothing” behaviour, according to which a customer uses the closest
facility, disregarding any other facility that is more distant, even if tHeedence in terms
of distance is very small. The ties among the competing firms are solved by a sharing
function. The binary choice rule assumes that customers are sensitive tofiengraie
in distances to the facilities. Under the partially binary choice rule, a customer visits the
closest facility for both firms. In this case, a customer could visit a facility belonging to
firm A and pass over a closer facility belonging to fiBrbut not the closest one to the
customer. According to the proportional choice rule, a customer visits all the facilities and
the proportion of the demand captured depends on the travel distance. Binary, partially bi-
nary and proportional rules, for essential and unessential demands, are studied in Hakimi
(1990). Some customer choice rules replace the hyper-sensitive consumer conduct im-
plicit in the binary model by a threshold-sensitive behaviour; in this case, a customer only
uses firmA exclusively if the distance from this customer to the competitors exceeds the
distance to firmA by an amount greater than or equal to a threshofdiormum sensibility
(Devletoglou, 1965; Devletoglou and Demetriou, 1967). An alternative to the binary and
proportional rules is a threshold-sensitive choice rule, under which the demand captured
by each firm in thedoubtful zonas given by a non-increasing function of the travel dis-
tance, such as the decay functions used in the generalized coverage models (Berman et al.,
2003, 2010; Berman and Krass, 2002).

The (|p)-centroid problem is a bi-level problem whose resolution, even for a moderate
size, requires significant computationéticet. Some solution approaches can be found in
the literature. An exact algorithm to find the locations that maximize the expected profit
is presented in Gosh and Craig (1984). However, this approach consists basically of an
enumeration of the feasible solutions for the leader, and so this algorithm is not very use-
ful. A tabu search algorithm is proposed in Benati and Laporte (1994), and Davydov et
al. (2014). In Campos Romjuez et al. (2010), the|fp)-centroid is solved via an exact
algorithm based on the evaluation of the score (demand captured by the best locations for
the follower) of a sequence of leader’s solutions constrained to a family of good follower’s
solutions. During the process, the leader’s solutions with a score higher than the current
upper bound of the optimum are eliminated from the feasible set. Another exact algorithm
is presented in Aleekseeva et al. (2010). In this case, an alternating heuristic, used pre-
viously in Bhadury et al. (2003) to solve the centroid problem in the plane, is applied
to obtain initial solutions. At each iteration, the problem of the leader constrained to a
family of follower’s solutions is solved to obtain a lower bound of the optimum; then, for
the leader’s solution obtained, the problem of the follower is solved to obtain an upper
bound. The process ends when the best lower and upper bounds coincide. A branch-
and-cut algorithm to solve the|p)-centroid problem is proposed in Rodoredo and Pessoa



(2013). A variable neighbourhood search is used in Davydov et al. (2014). Other heuristic
and exact methods to solve the discretp)tcentroid problem are described in Alekseeva
and Kochetov (2013). Most of the mentioned references consider the binary and essential
scenario. Diferent scenarios are analyzed in Biesinger et al. (2015a, 2015b), where the
problem is solved by applying evolutionary algorithms.

In this paper we consider a general customer choice rule which incorporates the pos-
sibility of a customer visiting both firms if the distances to the competing firms are not
very different. This generalized choice function includes the binary rule as a particular
case. We use this general choice function to define the generalized disfete(troid
problem in the case of essential goods, and analyze some particular decay functions. Lin-
ear programming formulations for both problems (follower and leader), are given, and an
exact procedure is applied.

The remainder of this paper is organized as follows. The model is introduced in Sec-
tion[J and an example is then described in Sedtjon 3. Integer programming formulations
are presented in Sectiph 4. A solution approach is described in Seftion 5. Some compu-
tational examples are presented in Sedtion 6 and, finally, the main conclusions drawn are
summarized in Sectidd 7.

2. Problem statement

LetC = {c« : k € [1..n]} be a finite set of demand points or clients dne {l; : i €
[1..m]} be a finite set of potential locations for facilities. Every paipe C has a weight

wy = w(cy) which represents the demandcat Let the total demand béf = Z Wg. Let

d«i = d(ck, ;) be the distance between pomte C and pointl; € L, and, forck e C and
X C L, dkx = minyx d(ck, X) is the distance betweean andX.

We consider a market of essential goods, which means that the demand is totally sat-
isfied, that is, the sum of demands served by the firms operating in the market is equal to
the total existing demand.

Assume that two competing firm&,andB, operate in the market withandr facilities
located atX, c L andY; c L, respectively. The demand at pomtcaptured by the firms
depends on the fierencejx = dy, — dix,. The market shares for firmsandB are given,
respectively, byW, = Wy — W and

W = Wa(Xp, Yo) = > wicfi(6) 1)
k=1

where f((6) is a non-negative and non-increasing function such that §(5) < 1 for
0>0.



Table[1 shows somefiierent capture functions. For simplicity in the notation, inélex

has been eliminated from the table. The piecewise linear, piecewise concave and piecewise
convex functions, for three pieces, are plotted in Figlire 1.

Table 1: Particular capture functions

1 if 6§<0
Binary fo)=q o if 6§=0,

0 if 6>0
whereu € [0, 1].

1 if <61
Step f(6)=1 ag if dg<d<dgi1, 1<q<Q ,
0 if 6>060+1
where 1> a; > --- > ag > 0.
1 if <6
Continuous piecewise linear| f(6) =4 agd+bq if dq<d<dg1, 1<9<Q
0 if  6>d011
1 = a1+
Where{ agdg+by = a8g16g+bg1, 1<q<Q .
0 = aQoQ+1 + bQ

For example, quadratic:

i a<déo<hb ,
0 if 6>b
wherea < b.

For example, quadratic:

1 if 6d<a
Continuous piecewise concave f(6) ={ 1 - (5-3)2 if

b-a
0 if 6>b
wherea < b.

1 if 6<a
Continuous piecewise convex f(s) = (b‘5)2 if a<é<b

Initially, no firm is operating in the market, fird, the leader, wants to enter the market
with p facilities taking into account that firrB, the follower, will enter the market later,
installing r facilities at the locations where the market shard8a$ maximum. FirmA
wants to determine thp locations that minimize the maximum demand that fBBnocan
capture.

If the leader hagp facilities open aiX,, the problem of the follower is to determine the
setY, of r locations that maximize its market shafg(X,, Y;). An optimal solution to this
problem,Y;(X;), is an €|X,)-medianoid. The problem of the leader is to determine the
setX, that minimizesWg(X,, Y;(Xp)), that is, the seK, which minimizes the maximum
market share that the follower could achieve. An optimal solution to the problem of the
leader is anr(p)-centroid. LetLP? = {X C L : |X] = p}, for any natural numbep > 0.

Then, formally, the |p)-centroid problem or leader’s problem is the following minimax
problem

min maxWg(X, Y). (2)



Figure 1: Examples of decay functions

a 0 b B
That is,
min S(X) whereS(X) = maxWg(X,Y). (3)
XelLP Yel'

For X c L, with |[X| = p, S(X) is the score oX. Problem|(2) (or[(B) ) is a bi-level
problem where the lower level problem is thgX;)-medianoid problem and the upper
level problem is ther(p)-centroid problem.

2.1. Some results

In this section, results are obtained for some common capture functions shown in Ta-
ble[1 and the casp = r. The propositions show situations in which the set of optimal
locations for the follower is the same as the set of optimal locations for the leader. In
particular, Proposition]|4 shows that, if we consider the piecewise linear functions, under
certain conditions, thp-median is the solution for both the leader and the follower. In this
case, thgg-median Xy, is a (p|p)-centroid and aff| Xy )-medianoid.

Proposition 1. Let, for every K,

1 if 0<a
f(0) = f(5;a,b) = g if a<d<b
O if o6>b

where a< 0 < b. If, fora= ay, b = by, set X is & p|p)-centroid with YX) = X, then for
all 0> a>a;and b> by > 0, we have YX) = X and X is & p|p)-centroid.
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Proor. Consider 0> a; > ag, by > by > 0, and the customer choice rule defined by
f(6) = T(0; &, by), fort = 0,1 and for allk.
ForY e LP denotesy = diy — dix and defineA; = Wa(X,Y) — We(X, X) fort = 0, 1.

That s,
M= (- 52g) S we(5og) 2 W (o) 2w

ge<ch a<dk<by Sk=by
Then, fora = ag, b = by, asX is a (p|p)-centroid withY(X) = X, we have that

8o = We(X.Y) = We(X.X) = > wicfi(6) ~ ) wif(0) =

k k
b
Wi fie(Ok) — W <0
200 ~ s ) v

Consider now the dierence lf; — a;)A; — (bg — ag)Ag. We obtain
(b1 — @A — (bo - B0)Ao = > Wi(—ar+80)+ ). Wi(-a + 8+

ok<ao Q<ok<ay
D Wi(=6i+bo) + > Wi(~by + o).
bp<ok<by Ok>b1
Sinceag < a; < 0 < by < by, each addend in the previous summation is less than or equal
to zero, and we have thdt(— a;)A; — (bg — ag)Ag < 0, which implies,

Als bO_aOAoSO.
1—a
From A; < 0 we conclude that, foa;, by, Wg(X, X) = ryﬁlg(WB(X, Y). On the other
b . .
hand,Wg(X, X) = 5 1a W is a lower bound of the optimum score. Theref&(&) =
1~ a1

DQRN(Z )

Proposition 2. Let, for every K,

1 if oJ<a
i6) = fe:ab) =1 1-(22)" if a<s<b
0 if o6>Db
where a< 0 < b and g is an even number greater than or equa2itdf, for b = by, set

X with Y(X) = X is a(p|p)-centroid, then for all b> by, we have YX) = X and X is a
(plp)-centroid.



Proor. Similarly to Propositiof [1.

Consider the customer choice rule definedfifyg) = f(d; a, by), for all k andt = 0, 1,
and suppose that, fawr= by, X is a (p|p)-centroid andr(X) = X. Letb; > by.

Using the same notation as in Proposifion 1,tfer0, 1 and for anyyY € LP, we have

Ay = We(XY) = Wa(X, X) =
ad (6 — a)d ad ad
B 2 2, (= (o e * o) T (L o) 2

ok<a a<dk<bx Sk=by

Then
(bl — a)qu - (bo - a)qu =
D0 i = - a)T+ (bo - )T + > wi( - (by - 8)" + (bo — &)").
bo<dk<b1 Sk=by
Sincea < 0 < by < by, each addend in the previous summation is less than or equal to
zero, and we obtairb{ — a)9A; — (bg — @)9A¢ < 0, which implies,
bo —a
bl —a

A1 < ( )qu <0.

As in Propositior} [L, from\; < 0 we conclude that, fdo = by, Wg(X, X) = S(X) =

min maxWs(Z,Y).
ZelP YelLP

Proposition 3. Let, for every K,

1 if o<a
f(6) = fe:ab) =1 (=)' if a<s<b
0 if &>b

where a< 0 < b and q is an even number greater than or equak.tdf, for a = a,, set X
with Y(X) = X is a(p|p)-centroid, then for all a witlD > a > a,, we have YX) = X and
X is a(p|p)-centroid .

Proor. Similarly to Propositiong]|1 arid 2.

Consider the customer choice rule definedfifyg) = f(6; a;, b), for all k andt = 0, 1.
Fora = ay, let X be a |p)-centroid withY(X) = X. Suppose & a; > ay. In this case,
fort = 0,1 and for anyY € LP, we have

At = WB(X9 Y) - WB(X’ X) =

7



b (b-6)9 b b
2,1 )t 2 " may a4 ap)

We obtain
(b—a)9A; — (b —ap)%A0 =

D wi(b-a) - (b-a)) + >, wif(b-a)-(b-67).

6k<ag ap<dk<ay
From 0> a; > & it follows that p—a;)?— (b—ap)9 < 0. Fromag < éx < a; < O it follows
that @—a;)9— (b—6x)? < 0. Thereforelf—a;)A; — (b—ag)9Aq < 0, asAg < 0O, itimplies
A; <0, and we conclude th&(X) = Wg(X, X) = ErglLr")\ r\;l?g(WB(Z Y). |

Proposition 4. Consider the piecewise linear functions

1 if 0 < &

i0) = G ach) =1 g if ac<s<b

0 if 0 > by

where a < 0 < by, for aII k. Let X} be the weighted p-median where demand point k

has a weight equal t%— If ax < dki — dxr < by forallk € K, i € I, then the

weighted p-median, % is a(pl p)-centroid and a(p|X};)-medianoid, and the optimum
bx

score is §X}) = b
. —

Wk

Proor. If a < dki — dkx < by forallk € K, i € I then for allY € LP, a < diy — dhxe < by
for all k € K. ThereforeWg(X\s,Y) = >, ka Whereék = dyy — dkxw, and we have
k

W 5 —
Wa(XY,Y) = Z b_k ; bk_ —; bk_
Y (- Y ) -
kbk_ " “bi - a ” “bi - a
WO, Xy — Zwk Chov Zwk dogy )

bk — ax

d
Z Wi bk k_w z€|_p Z Wk

From




it follows that

Z bde _Zk:kakd‘:)%akzo

and it is zero ifY = X{i. Therefore, for ally € LP, W(X[;,Y) < W(XJ), X[;) and we
conclude thalX{; is an (X{;|p)-medianoid. Moreover, ad/(X{}, X}}) is a lower bound of
the optimal score, we conclude tHaf(X{}, X};) = minmaxW(X,Y). That is, X}} is a

XeLP YelLP
(plp)-centroid.
|

Corollary 1. Consider the piecewise linear functiongéd) = f(d; ax, by) defined in Propo-
sition?, where @ < 0 < by. If mgxdki < min{-a, by} for all k, then the weighted
|

p-median, X, is a (p|p)-centroid and a(plX{y)-medianoid, and the optimum score is

S(XW) = X

Ly g

Prook. If maxdk. < min{—a, b} then, for allX, Y € LP and allk, we havea, < diy —dix <
b.. The result follows from Propositidrj 4.

O

Corollary 2. Consider the piecewise linear functiongd) = f(d; ax, by) defined in Propo-
sition[4, where a=a and lp = b for all k, witha< 0 < b. If maxdk, < min{-a, b}, then

the p-median, ¥, is a(p|p)-centroid and a(p|Xu)- medlan0|d and the optimum score is
S(Xum) = EWT where W is the total demand. In particular, for the symmetric case,

1
= —b, S(Xv) = S Wr

Proor. It follows from Proposition §.

3. An example

Consider the network represented in Figure 2, where the lengths are indicated beside
the edges and the demand at each node is shown inside the squares.| Table 2 shows the
results forr = p = 2, using the binary choice rule, piecewise linear, concave and convex



functions described in TabJe 1. Three pair of valuesff@ndb are considered: (1}a =

b =286, (2)a=-286,b =40, and (3)a = —40,b = 2.86. For each pair of values, two
cases are solved: (a) no restrictions, coincident locations are allowed, and (b) coincident
locations are not allowed. The first column indicates the customer choice rule used to
obtain the locations. The second and fourth columns show the optimal locations for each
case. Column 6 shows the demand captured by the follower if the locations for leader and
follower coincide. In some cases, multiple optimal solutions exist. The last row shows the
results for a scenario in whichftrent choice functions for flerent demand points are
considered, and where symmetric piecewise linear, concave and convex decay functions
are used.

The results obtained show that symmetric and asymmetric pro follower choice rules
favour coincident locations, and so the follower opens one or both facilities at a point
previously selected by the leader. For asymmetric pro leader decay functions, coincidences
do not occur. For any, Wg(X, X) provides a lower bound of the sca®X). The most
advantageous scenario for the follower is given by the concave asymmetric pro follower
decay function. From Corollafy] 2, we deduce that, in the linear case, foffiaisntly
large—a andb, the 2-median{1, 5}, is a (22)-centroid and the optimum score isbéjg_

Table 2:Wjp value and optimal locations (in some cases there are multiple solutions)

Rule Coincidences Coincidences X=Y
allowed not allowed
XY Ws=S(X) | XY | We=S(X) | Ws
Binary (u = 0.5) 17,13 16.50 1,3;5,6 13 15.50
—a =b =286 (Symmetric)

Linear 1,7,1,11 16.50 1,3;5,6 13 15.50
Concave 1,3;1,3 23.25 1,3;5,6 13 23.25
Convex 1,3;1,5 14 1,3;5,6 13 7.75

a = -2.86,b = 40 (Asymmetric pro follower)

Linear 1,3;1,3 28.93 1,5;2,8 22.72 28.93
Concave 1,3;1,3 30.86 1,2;5,9 26.23 30.86
Convex 1,3;1,3 27.00 1,5;2,8 18.31 27.00

a = -40,b = 2.86 (Asymmetric pro leader)

Linear 1,3;5,8 9.88 1,3;5,8 9.88 2.07
Concave 1,3;5,6 11.16 1,3;5,6 11.16 0.14
Convex 2,5;3,7 7.30 2,5;3,7 7.30 4.00

Symmetric mixed scenario
Linear-Concave-Conve} 15,38 | 1477 [1538] 1477 [ 14

10



Figure 2: Network of Example
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4. Linear formulations

4.1. The(r|X,)-medianoid problem

The problem of the follower is the|K,)-medianoid problem. Given the position of the
leader, the follower wishes to open facilities at the locations which provide the maximum
market share. In order to formulate this problem, we introduce the following variables

| 1 if the follower opens a facility at poirt )
' 0 otherwise

~_J 1 if clientc visits a facility atl; )
'“10 otherwise

fori e [1.m], ke [1..n].
The problem can be formulated as follows

m n
maxy; >, hz

i=1k=1
subject to:
m
=T
2 Zi<1 kell.n]
i=1
Zi <Y ie[l.m], ke [1..n]

Zi, ¥, €{0,1} ie[l.m], ke[l..n]

Wherehki = kak(éki) anddki = dki — dkxp, i€ [1m], ke [1n]
The objective function represents the demand captured by the follower. The first con-

m
straint states that the follower opengacilities. Constrainty, z; < 1 means that each

client k (demand poink) patronizes at most one foIIower’IslfaciIity. Constramt < V;
indicates that a clierkt patronizes a facility at locatioh only if a facility is open at that
point. This model hae(1+ n) variables and * n(1 + m) constraints. Observe that the in-
tegrality constraints foz,; can be relaxed, in which caggis interpreted as the proportion
of demand aty captured by the follower at locatidn

This optimization problem has good properties with respect to the performance of
the greedy algorithm (which provides a lower bound) and the relaxed linear programming
problem (which gives an upper bound). An alternative formulation with a lower dimension
is described in Berman and Krass (2002). For kmgonsidey, j € [1..m¢], the nonzero

12



values ofhy; with ; indexed in increasing order. Fkre [1..n] and j € [1..m], define the
sets

Lej = {li € L : hg = payj}
|ij: fie[l.m:l;e JLk,-}. (7)

SetLy; contains the locations ib that capture the cliert at levelu,;. Setly; is the set of
indexes of points iry;.

Now z; = 1 if client ¢, is captured by a follower’s facility at level,; andz; = 0
otherwise. Then, the |X,)-medianoid problem can be formulated as follows

n m
max 2, 2, pkjZ;

k=1 j=1

subject to:

m

2Yi=r

B ®)
2 %4j<1 ke[l.n]

j=1

Zj< X Vi ke[l.n], je[l.m{]

ielyj

Vi, Zj€1{0,1) je[l.m], ke [l..n]

n n
This model hasn+ Y, m, variables and * n+ Y my constraints.
k=1 k=1

4.2. The(r|p)-centroid problem

The problem of the leader is thg§)-centroid problem. To formulate this problem we
introduce the following variables

1 if the leader opens a facility at poiint
= : ©)
0 otherwise

U = 1 if clientc visits a leader facility located at poiht (10)
K710 otherwise

13



wherei € [1.m], k € [1..n]. Let J = [1..(T)] be the index set correspondingltt We can
formulate the | p)-centroid problem as follows

min W

subject to:

m

X=p

i=1

m n . i

Y Y hui<W jel (11)
ial k=1

Z Uki = 1 ke [1n]

i=1

Ui < X ie[l.m], ke[l..n]

Ui, % € {0, 1} ie[l.m], ke[l..n]

where

hl. = wif(6)) ands). = di(Y;) — d. (12)

Expression[(1]2) represents the demandyataptured by the follower if hishe has
facilities atY; and the closest leader’s facility to cliegitis located at locatiof). Observe

m
that constrainy’, u = 1 implies that every client is assigned to a facility but the leader

i=1
may not capture demand from this demand point. This modeirijas- n) variables and
1+n(1+m)+ (’:‘) constraints. Integrality constraints fag can be relaxed.

5. An exact solution approach

Some exact procedures proposed in the literature to solve the binary dis¢pgte (
centroid (Alekseeva et al., 2010; Campos Rgdez et al., 2010; Rodoredo and Pessoa,
2013) can be adapted to solve the discref){centroid for other customer choice func-
tions. The following algorithm allows us to obtain optimal solutions for thp){centroid
problem. The basic idea is to calculate lower and upper bounds of the op¥iumtil
these two bounds coincide. At each iteration, Problem (11) is modified by replacing the
set of follower’s feasible solutiong,’, by a subsef c L". This problem is solved to
obtain a solutiorX and the corresponding scdge(X).

Algorithm:

Step linitialization.

14



1.1 Selectsfeasible leader’s solutions, i = 1, s S, Solve the follower’s problem
for Xi,i = 1,...,s. An upper bound ofV* is W = minS(X;). Let X* = X with
|

S(X) = W.
1.2 LetF = {Y;}1, be the initial family of good follower candidates. S&t= 0

Step 2lterations. Repeat, untilW = W.

2.1 Solve the leader’s problem usirfg insteadL" in (11). LetX be the optimal
solution obtained.

If the optimal value obtaine8#(X) verifiesS#(X) > W then doW = S (X).
If W =W, thenW* = W = W is the optimal value and* = X is the optimal
set of locations for the leader.

2.2 Solve the follower’s problem foX. If S(X) < W then setW = S(X) and
X* = X. If W =W, thenW* = W = W is the optimal value anX* is the
optimal set of locations for the leader.

SetF = F U {Y(X)},, whereY(X) is the ¢|X)-medianoid.

6. Computational example

We now apply the algorithm described in Secfipn 5 to solverth®-Centroid problem,
or leader’s problem, for continuous piecewise linear decay functions in symmetric and
asymmetric cases. We also analyze the binary case, considering that ties can be solved by
assigning half of the demand to each player (sharingficoent to follower equal tu =
0.5). For the linear case, we choose the extremes of the intaraatjb, takinga = —a xp
andb = B x p, wherea, 8 > 0 andp is the average of the absolute valigs — dy;| with
ke K,i,jelandi # j. Inthe computational examples, we takg = 0.10, 0.25, 0.50.

We take the data used in Alekseeva et al. (2010), wBetelL, n = m = 100, and the
points are chosen at random with a uniform distribution in a square measuring 7000.

Two cases for the demand are considered, casg(a)1 for all k (instances 1 to 10), and
(b) the demand is generated by a uniform distribution i2(@] (instances 11 to 20).

In order to limit the computational cost, we introduce a stop rule to stipulate the maxi-
mum number of iterations. The algorithm stops wheni&) W < y, wherey is a small
number, and wher&/ andW are, respectively, a lower and upper bounds of the optimum
W+, or (b) the maximum number of iterations is reachedWlf= W the optimum is ob-
tained. Ifp = r a lower bound is obtained when we consider the same locations for both
competitors. In the computational exampjeis 0.1% of the total demand.
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As the two initial leader’s solutions, we consider thenedian and the solution ob-
tained via the alternating algorithm. In this approach, each player (leader and follower)
reacts to the actions of the competitor by choosing the locations which maximize its profit,
that is, both players behave as followers. An alternating heuristic is used in Bhadury et
al. (2003) to solve the centroid problem in the plane. This is also used in Alekseeva et
al. (2010) to find the initial leader’s solutions in a discrete space. The initial family of
follower’s solutions is composed of the|X)- medianoid whenX is the p-median, the
r-median, and ther[X)-medianoid whenX is the solution obtained via the alternating
heuristic.

The computational results are shown in Tables 3 to 7, each of which corresponds to spe-
cific values ofw andg. The first column represents the instance, the AH column shows the
W value provided by the alternating heuristic and ¥Wfecolumn shows the bedV value
obtained with the exact algorithm modified with the introduction of the above-described
stop rule. The percentages of demand captured by the foIIower are shown in brackets.

Column %Error shows, for each instance, the valuesx’LQQN— whereW; represents

the total demand. Column Iterl shows the iteration in WhICh the best objective value was
found. Column Iter2 shows the iteration at which the algorithm stopped. The last column
shows the elapsed time in seconds consumed to find the best solution.

These computational results were obtained using a PC Intel(R)Core(TM) i7-2700K
CPU 3.50GHz, RAM 16GB. The solutions were obtained using CPLEX solver in GAMS.

The results fop = r = 5 and for the dferent scenarios are shown in Subsectjonis 6.1
(for continuous piecewise functions) gnd]6.2 (for the binary choice rule). Subsgctjon 6.3
shows, for several values @f = r, the percentage of demand captured by the follower
and the iteration at which the best W value was reached in the piecewise linear case with
a = 0.10.

6.1. Results for piecewise linear decay functions

Tables B| # and|5, show the results for the symmetric casewvitjg = 0.10, 0.25, 0.50,
respectively. We observe that, in the symmetric cigedecreases whanincreases (ex-
cept for instance 11 and = 0.25 where %Errot 0.27). Although it is not presented in a
table, the case = g = 0.75 was also solved. In this scenario, the optimum score for all
instances corresponds to coincident locations, that is, leader and follower capture 50% of
total demand. In the tables, the highest value of %Error is indicated in bold. In no case
is this value higher than.83 (in other wordsW — W is at most (83% of total demand).
The number of iterations required to find the best solution (Iterl) decreasesanhgh
increases, that is, when tbaring interval increasesAccording to Corollary P, for suf-
ficiently large values of, the 5-median is a (5)-centroid. For low values af = 8, some
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instances requires great computatiornfédr, due to the diiculty of solving the problem
of the leader at each iteration. Fer= g = 0.10, the AH solution was improved for all
instances except for instance 20. koe 8 = 0.25, an improvement was obtained for 13
of the 20 instances, while far = g = 0.50 the AH solution was the best solution found in
17 of the 20 instances.

In the asymmetric case, with = 0.10, 8 = 0.25, for all instances, the solution is the
(5/5)-median, which was obtained at iteration IterQ. In this case, leader and follower
open facilities at the same locations. Therefore, according to Propdsfitiond ,<fd.10
andg > 0.25, this solution is optimal. TabJe 6 shows the resultsifer 0.25, g = 0.10, in
this case the maximum number of iterations allowed is 50. The AH solution was improved
in all cases except for instance 4.

Table 3: Piecewise linear = 8 = 0.10

Instance Lineara =8 =0.10

p=r=5 AH W %Error Iterl Iter2  Time (sc)
1 52.503 51.808 0.03 22 22 203.297
2 53.691 52.241 0.11 23 100 326.995
3 53.849 53.136 0.10 33 100  1999.205
4 52.871 52.442 0.12 22 100 534.764
5 53.453 52.737 0.10 32 100 970.432
6 51.952 51.154 0 13 13 108.840
7 55.220 52.105 0.12 25 100 465.287
8 52.775 52.109 0.18 17 100 178.092
9 52.842 52.080 0.17 18 100 263.202
10 53.113 52.816 0.12 11 100 58.405
11 4407.669  4397.829 (581%) 0.18 8 100 23.448
12 5720.181 5618.586 (581%) 0.08 42 70 4576.865
13 5068.399  4897.234 (527%) 0.03 9 33 152.631
14 5175.613 5144.412 (532%) 0.11 13 100 102.367
15 5632.190 5485.154 (535%) 0.05 35 49 1329.587
16 5206.571 5030.136 (525%) 0.06 37 41 1462.280
17 6065.238  5920.656 (527%) 0.09 38 40 1381.901
18 5171.269 5066.573 (531%) 0.08 10 41 53.009
19 5707.178  5532.966(5X2%) 0.07 45 57 5980.559
20 5232.133  5232.133(516%) 0.26 0 100 0

In order to illustrate the results, we present some figures corresponding to instances
3 and 13. In these two instances, the demand points are the same but the distribution of
the demand is dierent. Figurg |3 represents the distribution of the demand for instance
13. Each demand poiritis represented by a circle whose radius is proportional to its
demand. In Figures|4 {o [LO, the leader’s locations are represented by squares and those
of the follower, by asterisks. Figufé 4 shows the solution for instance 3. In this case, the
demand for each client is equal to one and- 8 = 0.10. Figure$ B| |6 and 7 show the
solution for instance 13 in the symmetric case with- 0.10, @ = 0.25, anda = 0.50,
respectively. Observe that for instances 3 and 13, and £00.10 a coincidence occurs but
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Table 4: Piecewise linear = 8 = 0.25

Instance Lineara = 8 =0.25

p=r=5 AH W* %Error  Iterl Iter2  Time (sc)
1 51.721 51.473 0.11 4 100 10.241
2 51.183 50.680 0.03 4 4 9.657
3 52.085 51.437 0.17 16 100 189.684
4 50.633 50.227 0 6 6 18.789
5 51.305 51.305 0.14 0 100 0
6 51.035 50.339 0.06 3 3 7.483
7 51.582 51.490 0.10 11 100 71.293
8 51.427 50.880 0 6 6 47.95
9 50.965 50.965 0.17 0 100 0
10 51.212 51.212 0.13 0 100 0
11 4415.994  4415.994(582%) 0.27 0 100 0
12 5413.952  5413.952 (546%) 0.10 0 19 0
13 4732.596  4694.718 (520%) 0.05 2 3 8.163
14 5082.924 5058.789 (586%) 0.10 9 10 40.139
15 5249.534  5249.534 (525%) 0.14 0 100 0
16 4947.429  4929.889 (519%) 0 24 24 509.169
17 5834.244  5755.125 (539%) 0 17 17 153.789
18 4909.392  4899.036 (526%) 0.09 11 12 57.660
19 5419.721  5412.545 (526%) 0.08 17 22 363.160
20 5147.021 5147.021 (588%) 0.33 0 100 0

Table 5: Piecewise linear = 8 = 0.50

Instance Lineara = 8 = 0.50

p=r=5 AH W+ %Error Iterl Iter2  Time (sc)
1 50.334 50.334 0.18 0 100 0
2 50.032 50.032 0.03 0 0 0
3 50.178 50.178 0.18 0 100 0
4 50.045 50.045 0.05 0 0 0
5 50.392 50.392 0.32 0 100 0
6 50.047 50.047 0.05 0 100 0
7 50.121 50.121 0.12 0 100 0
8 50.111 50.111 0.11 0 0 0
9 50.000 50.000 0 0 100 0
10 50.723 50.723 0.22 0 100 0
11 4362.673  4362.673 (5B1%) 0.21 0 0 0
12 5268.607 5268.607 (508%) 0.08 0 0 0
13 4675.500 4675.500 (50%) 0 0 0 0
14 4963.500 4963.500 (50%) 0 0 0 0
15 5185.124  5144.842 (503%) 0.15 0 100 0
16 4787.602  4774.220 (506%) 0 0 2 0
17 5599.500 5599.500 (50%) 0 0 0 0
18 4830.291  4830.291 (584%) 0.07 0 2 0
19 5365.244  5353.006 (549%) 0.07 1 8 1.881
20 5116.786 5116.786 (504%) 0.04 0 0 0
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Table 6: Piecewise linear = 0.25, 8 = 0.10

Instance Lineara = 0.258 = 0.10

p=r=5 AH W+ %Error Iterl Iter2  Time (sc)
1 44.688 43.946 0.19 40 50 2280.811
2 43.301 43.301 0.12 0 50 0
3 45.979 44.739 0.14 20 50 858.145
4 45.684 43.473 0.12 30 50 1023.665
5 45.549 45.074 0.23 44 50 3561.767
6 43.965 42.531 0.08 38 38 1871.418
7 47.555 44.808 0.26 46 50 3694.808
8 46.873 44.297 0.11 43 50 2186.552
9 46.080 44.830 0.11 42 50 2947.284
10 45.189 44.070 0.15 45 50 2470.528
11 3829.513  3817.158 (433%) 0.10 10 38 52.877
12 4980.316  4860.531 (480%) 0.85 24 50 1007.607
13 4187.448  4110.376 (436%) 0.09 20 31 477.543
14 4291.753  4261.193 (422%) 0 25 25 844.550
15 4713.435  4544.743 (437%) 0.18 17 50 368.885
16 4468.938 4333.618 (453%) 1.08 7 50 56.068
17 5090.326  5015.803 (4A9%) 0.27 21 50 490.766
18 4178.370 4126.638 (4B8%) 0.07 27 34 1109.047
19 4929.027  4867.981 (483%) 1.58 5 50 21.419
20 4586.127  4511.942 (482%) 0.15 31 50 697.893

in different places. On the other hand, in Figdiidg 5, § and 7, we see that Asncreases
the follower locates its facilities closer to the leader. kot B = 0.50 both competitors
choose the same locations, a 5-median. Figure 8 shows the solution obtained a5,
B = 0.10 (asymmetric in favour of the leader). Observe thatfer 0.25,8 = 0.10, leader
and follower choose étierent locations. Fatx = 0.10,8 = 0.25 (asymmetric in favour of
the follower), the solution for leader and follower is a 5-median.

6.2. Results for the binary case

In this subsection we present some results for the binary rulp forr = 5. Tablg}
shows the results for the case in which coincident locations are allowed and where, in case
of tie (dvy = dkx), the follower captureg x wy, where 0< u < 1. We consideu = 0.5.
Whenp = r, a lower bound of the optimal capture for the follower i5\W0;. The last
column of the table shows the optimal valif&, for the binary case oriented to the leader
(u = 0), these values having been taken from Alekseeva et al. (2010).

In this scenario, for all instances, the b#¢tvalue was obtained before 50 iterations,
the greatest computationaffert was required for instance 12, when 44 iterations were
required to obtain the best solution. If we compare this with the results for the symmetric
linear case wherr = 8 = 0.10, we see that, except for instances 11 and 20, the upper
bound of the error (column %Error) for the binary case is significantly higher, as a conse-
guence of the discontinuity of the binary decay function.
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Figure 3: Demand distribution. Instance 13

7000 ¢ O . e O
8] O C%
BO00 @] 0%
6)0 o 05 o . . 5o C@
5000 o ;
O o]
I O
b © @ o & oNe)
O o O
3000 b .o
O
& < ] O © oo
00 °
6 0O 6@ . o O
1000 ’ s © 7 Q
I O O
& @ o cp O o Cb o
D @ 1 1 O 1 O 1 1 OO OO 1
0 1000 2000 3000 4000 5000 GOOD 7000

Figure 4: Lineaw = 8 = 0.10. Instance 3
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Figure 5: Linear = g = 0.10. Instance 13
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Figure 6: Linear = 8 = 0.25. Instance 13
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Figure 7: Linear = 8 = 0.50. Instance 13
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Figure 8: Linearr = 0.258 = 0.10. Instance 13
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Table 7: Binaryu = 0.50

Instance Binaryu = 0.50

p=r=5| AH W %Error Iterl Iter2  Time (sc) W
1 54 53 0.5 9 50 49.884 53
2 54 53 0.5 10 50 50.449 52
3 56 55 1 4 50 21.050 55
4 55 54 1 34 50 1318.348 53
5 55 53 0.5 11 50 109.520 53
6 54 53 0.5 24 50 518.872 53
7 55 53 0.5 22 50 489.855 53
8 56 53 0.5 32 50 961.745 52
9 53 53 0.5 0 50 0 53
10 54 54 0.5 0 50 0 53
11 4847 4550 (586%) 0.098 10 31 43.390 4550 (52.36%)
12 5929 5698 (54.6%) 1.188 44 50 3002.127 5698 (54.16%)
13 5321 5222 (585%) 2.529 24 50 1325.695 5136 (54.92%)
14 5335 5335 (534%) 0.524 0 50 0 5249 (52.88%)
15 5776 5675 (530%) 1.611 29 50 1191.760 5649 (55.15%)
16 5274 5173.5(585%) 0.888 24 50 652.883 5025 (52.79%)
17 6333 6046 (5329%) 0.455 33 50 986.178 6046 (53.99%)
18 5232 5153 (532%) 0.544 30 50 912.467 5153(53.92%)
19 5975 5696 (549%) 1.462 29 50 2476.411 5696 (54.79%)
20 5655 5392.5 (5Z3%) 0 34 34 727.762 5303 (51.86%)

Figure 9: Binaryu = 0 (oriented to leader). Instance 13
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Figure 10: Binary = 0.5. Instance 13
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6.3. Comparative analysis forerent scenarios and values of p

In the results presented in Sectipng 6.1 6.pferr = 5, we observed that there
are three locations which appear in all the leader solutions for the symmetric scenarios
a = B = 0.10,0.25,0.50, and the asymmetric case= 0.10, 8 = 0.25. Two of these
points appear in all scenarios except that of the binary oriented to the leader. One of these
points appears in the solution for all scenarios analyzed. Other points coincide in the
solution of three of these scenarios. This finding suggests that there are points which are
goodlocations for the leader in most cases.

Figurg 11 shows the average demand captured by the follower (as a percentage) and the
Iterl value for 1< p = r < 20 in the symmetric linear case with= 0.10. As the follower
can open facilities at the same locations as the leader, the percentage of demand captured
is always greater than or equal to 50%. For the scenarios analyzed, this percentage is
less than 52% in all cases. The number of iterations required to reach the best objective

value is always less than 32. The error (percentage), defined as V:l\{@@ is less than

0.6 in all cases, with lower values for small valuespofThe average error is®43%. As

p increases, so does the number of coincident locations, while the percentage of demand
captured by the follower tends to 50%. This behaviour of the demand captured by the
follower differs from that observed for the binary case oriented to the leader; in this binary
scenario, the market share of the follower for the highest valugsi®significantly less

than 50% (Alekseeva et al. 2010).
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Figure 11: Symmetric case= 3 = 0.10
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7. Conclusions

In this paper we generalize the discretip)-centroid problem to consider customer
choice rules defined by generic decay functions. A customer may visit the closest facility
of each of two competitors, leader and follower, using at each of these facilities an amount
of buying power which depends on theétdrence in travel distance (or time) to the closest
competing facilities. Fop = r, we obtain interesting theoretical results for piecewise
linear, concave and convex decay functions. In particular, for continuous piecewise linear
functions, we prove that under certain conditions, phmedian is a | p)-centroid and the
optimal score corresponds to coincident locations, that is, leader and follower open their
facilities at the same places.

For particular piecewise linear decay functions, our computational examples show that
when the sharing zone is expanded the follower tends to locate facilities closer to those of
the leader and the optimal score decreases. The solution consisting of coincident locations
provides a lower bound of the optimum, while an upper bound was obtained via an alter-
nating heuristic. A comparison of the results fox Ip = r < 20 suggests that whgn=r
increases the demand captured by the follower tends to 50% of the total demand.

To obtain the solutions presented, we applied an exact procedure which requires the
resolution of a constrained leader’s problem at each iteration. As the number of iterations
increases, this problem becomes more complex and the computatiimrarequired in-
creases significantly. This outcome suggests that heuristic procedures should be used to
solve the (|p)-centroid problem.
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