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7 Conclusion

This paper has presented the simplest case of a Bayesian analysis of free-response psi exper-

iments, and illustrates the role that belief plays in assessing data in a controversial domain.

Many more studies and analyses are available for those interested in learning more. See Bem

and Honorton (1994), Bem et al (2001) and Storm et al (2010) for meta-analyses of ganzfeld

studies with varying degrees of complexity. See Bem (2011), Wagenmakers et al (2011) and

Bem et al (2011) for another interesting debate and resulting Bayesian analysis of psi data.
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Abstract

Cost–effectiveness analysis of medical treatments search for choosing an “op-

timal” treatment among a set of k ≥ 2 alternative treatments T1, ..., Tk for a given

disease. It is imposed that the cost and the effectiveness of the treatments are

taken into account in the selection procedure.

We focus the problem as a Bayesian statistical decision problem, present their

elements and illustrate the procedure. Further, we discuss some difficulties aris-

ing in cost–effectiveness analysis when heterogeneity is present in the cost and

effectiveness data. Heterogenous data implies in cost–effectiveness analysis the

need of considering special statistical techniques such as Bayesian meta–analysis

and Bayesian probabilistic clustering.

Keywords and phrases. Cost and effectiveness of a treatment, predictive reward

distribution of a treatment, optimal treatment, utility function.

1 Introduction

Health Economics is an area of the field of Economics with an intensive recent de-

velopment. The major concerns of researchers in this area is the comparison between

medical treatments based on their effectiveness and cost. It is accepted that health

resources are limited and effectiveness comes at a price. As control over health expen-

diture has increased over the last thirty years, the term cost-effectiveness (CEA) has

gained in popularity.
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ments T1 and T2. Therefore, it is assumed that cost and effectiveness (c, e) are random

variables with a partially unknown distribution P (c, e).

In a cartesian plane with axes (∆e,∆c) quadrant I (QI) correspondons to ∆e ≥
0,∆c ≥ 0, quadrant II (QII) to ∆e ≤ 0,∆c ≥ 0, quandrant III (QIII) to ∆e ≤ 0,∆c ≤ 0

and quandrant IV (QIV) to ∆e ≥ 0,∆c ≤ 0. For ICER12 in QI treatment T1 is more

costly and more effective than T2, in QII T1 is more costly and less effective than T2, in

QIII T1 is less costly and less effective than T2, and in QIV T1 is less costly and more

effective than T2. It is clear that when ICER12 is in QII T2 is preferred to T1 and if it

in QIV then T1 is preferred to T2. However, when ICER12 is in either in QI or QIII

the decision is not so evident. In those cases a subjective input on the cost per unit of

increment of effectiveness is necessary.

When the distribution P (c, e) is not completely known ICER12 has to be estimated

from a sample of cost and effectiveness of patients under treatment T1 and T2. Let

ci = (ci1, ..., cini
) and ei = (ci1, ..., cini

) for i = 1, 2, be such a samples. An estimation

of ICER12 that can be very inaccurate is given by

Ĉr12 =
c̄1 − c̄2
ē1 − ē2

,

where c̄i =
∑ni

j=1 cij/ni and ēi =
∑ni

j=1 eij/ni are the samples means. Suggestions and

criticisms on how to measure the uncertainty on the ICER12 estimation have been

given by many authors. For instance, when the distribution is completely unknown a

bootstrap methodology is advocated by Chaudhary and Stearns (5) and Briggs et al.

(6). For further discussion on interpretive problems of the ICER see (7) or (8).

An extension of the ICER for comparing two treatments is the incremental net

benefit (INB21) introduced by Stinnett and Mullahy (9). This is defined as

INB12 = R12∆e−∆c,

where R12 is the monetary value assigned to the unit of increment of effectiveness of

treatments T1 and T2. There are obvious relationships between the ICER12 and the

INB12 that we do not discuss here. An estimation of the INB12 that can be very

inaccurate is given by

Î12 = R12(ē1 − ē2)− (c̄1 − c̄2).

The sample variance is a mensure on the uncertainty of the estimator Î12 that is,

V ar(Î12|R12) =
2∑

i=1

R2
12s

2
ei
+ s2ci − 2R12s

2
ei
s2ciri

ni

,

where s2ei , s
2
ci
are the sample variances of the effectiveness and cost, and ri the estimator

of the linear correlation.

This increasing focus on CEA of new or existing treatments has been led by the

development of health technology assessment (HTA) agencies, such as the National

Institute for Health and Care Excellence (NICE) in the UK, which seeks to provide

guidelines for Health care providers and decision makers about which treatments should

be covered in a context of scarce economic resources.

In Europe, since 2008, the European Medicines Agency has been working closely

with Health Technology Assessment (HTAs) Bodies in different Member States, as well

as with the European Network for Health Technology Assessment (EUnetHTA), with

the objective of generating relevant data for regulators, HTA bodies and other interested

parties.

In the United States, the federal government has provided financial support for

health technology assessment since the early 70s. The US Office of Technology Assess-

ment (OTA), the Medicare Coverage Division with the Center for Medicare and Med-

icaid Services (CMS), and the Agency for Healthcare Research and Quality (AHRQ)

are some federal institutions that undertake or fund cost or cost-effectiveness analyses

of medical technologies and interventions (see (1) and (2)).

In other countries, such as Australia or Canada, it is regulated that pharmaceutical

companies should submit their products to CEA (3).

All the research efforts on cost–effectiveness analysis are spread out on topics that

range from the formal definition and measurement of effectiveness and cost of a medical

treatment to the development of tools for treatment comparison. The statistical decision

theory plays an central role for understanding CEA and in this paper we do briefly

summarize some achievements and statistical difficulties in this area.

The rest of the paper is organized as follows. In Section 2 we consider the evolution of

the statistical tool for cost effectiveness analysis starting from the direct consideration of

the random variables cost c and effectiveness e of a treatment, to the more sophisticated

notion of net benefit. In Section 3 we introduce the cost–effectiveness analysis as a

decision problem, identify the reward of a treatment, introduce two utility functions

and the notion of optimal treatment. Section 4 describes the statistical problems that

arise when the samples are not homogenous.

2 Statistical tools for cost-effectiveness analysis

For a time the incremental cost-effectiveness ratio (ICER) was the basic tool for

cost-effectiveness analysis (4). Let ∆c = Ec1 − Ec2 and ∆e = Ee1 − Ee2 be the

difference of the expectation of cost and effectiveness of two given treatments T1 and

T2. Then, the ICER for the treatments is defined as the ratio

ICER12 =
∆c

∆e
,

whose meaning is the increment of cost per unit of increment of effectiveness of treat-
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ments T1 and T2. Therefore, it is assumed that cost and effectiveness (c, e) are random

variables with a partially unknown distribution P (c, e).
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0,∆c ≥ 0, quadrant II (QII) to ∆e ≤ 0,∆c ≥ 0, quandrant III (QIII) to ∆e ≤ 0,∆c ≤ 0

and quandrant IV (QIV) to ∆e ≥ 0,∆c ≤ 0. For ICER12 in QI treatment T1 is more

costly and more effective than T2, in QII T1 is more costly and less effective than T2, in

QIII T1 is less costly and less effective than T2, and in QIV T1 is less costly and more

effective than T2. It is clear that when ICER12 is in QII T2 is preferred to T1 and if it

in QIV then T1 is preferred to T2. However, when ICER12 is in either in QI or QIII
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V ar(Î12|R12) =
2∑

i=1

R2
12s

2
ei
+ s2ci − 2R12s

2
ei
s2ciri

ni

,

where s2ei , s
2
ci
are the sample variances of the effectiveness and cost, and ri the estimator

of the linear correlation.

This increasing focus on CEA of new or existing treatments has been led by the

development of health technology assessment (HTA) agencies, such as the National

Institute for Health and Care Excellence (NICE) in the UK, which seeks to provide
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In the United States, the federal government has provided financial support for
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ment (OTA), the Medicare Coverage Division with the Center for Medicare and Med-

icaid Services (CMS), and the Agency for Healthcare Research and Quality (AHRQ)

are some federal institutions that undertake or fund cost or cost-effectiveness analyses

of medical technologies and interventions (see (1) and (2)).

In other countries, such as Australia or Canada, it is regulated that pharmaceutical

companies should submit their products to CEA (3).

All the research efforts on cost–effectiveness analysis are spread out on topics that

range from the formal definition and measurement of effectiveness and cost of a medical

treatment to the development of tools for treatment comparison. The statistical decision

theory plays an central role for understanding CEA and in this paper we do briefly

summarize some achievements and statistical difficulties in this area.

The rest of the paper is organized as follows. In Section 2 we consider the evolution of

the statistical tool for cost effectiveness analysis starting from the direct consideration of

the random variables cost c and effectiveness e of a treatment, to the more sophisticated

notion of net benefit. In Section 3 we introduce the cost–effectiveness analysis as a

decision problem, identify the reward of a treatment, introduce two utility functions

and the notion of optimal treatment. Section 4 describes the statistical problems that

arise when the samples are not homogenous.

2 Statistical tools for cost-effectiveness analysis

For a time the incremental cost-effectiveness ratio (ICER) was the basic tool for

cost-effectiveness analysis (4). Let ∆c = Ec1 − Ec2 and ∆e = Ee1 − Ee2 be the

difference of the expectation of cost and effectiveness of two given treatments T1 and

T2. Then, the ICER for the treatments is defined as the ratio

ICER12 =
∆c
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,

whose meaning is the increment of cost per unit of increment of effectiveness of treat-
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{P (c, e|θ1), ..., P (c, e|θk}, where θj is a parameter tight to treatment Tj for j = 1, ..., k,

and iii) a utility function U(c, e), the utility we obtain for (c, e).

We note that z(R) can be considered a utility function, that is U1(c, e|R) = z. Under

this utility function the utility of the reward P (c, e|θj) is

U1(P (c, e|θi)|R) = R

∫ ∫
e P (c, e|θi)dcde−

∫ ∫
c P (c, e|θi) dc de.

This utility depends on θi and hence the utilities of the rewards {P (c, e|θ1), ..., P (c, e|θk}
cannot be compared. Thus, we need to eliminate this parameter from the distribution

P (c, e|θi). The Bayesian way requieres two steps:

1.- We first complete the sampling model P (c, e|θi) to the Bayesian model

Mi : {P (c, e|θi), π(θi)},

where π(θi) is a prior distribution for the parameter θi. This prior distribution may

contain subjective prior information on θi. If prior information on θi is not available

an objective prior, as the reference prior (13), can be utilized. Then, for model Mi and

sample ci = (ci1, ..., cini
) and ei = (ci1, ..., cini

) the updated posterior distribution of θi
is given by

π(θi|ci, ei) =
(
∏ni

i=1 P (cij, eij|θi)) π(θi)∫
(
∏ni

i=1 P (cij, eij|θi)) π(θi)dθi
.

2.- We compute the updated reward distribution of (c, e) for treatment Ti, which is

obtained as

P (c, e|ci, ei) =
∫

P (c, e|θi)π(θi|ci, ei)dθi.

Then, the utility of the reward P (c, e|ci, ei) is given by

U1(zi|R) = R

∫ ∫
e P (c, e|ci, ei)dcde−

∫ ∫
c P (c, e|ci, ei) dc de,

that is, it is a linear function of the expected cost and effectiveness.

For a given R, the optimal treatment is Tj if

U1(P (c, e|cj, ej)|R) = max
i=1,...,k

U1(P (c, e|ci, ei)|R).

Example Let us consider two treatments T1 and T2 with normal reward distributions

given by

P (c, e|θi) = N(c|µci, σ
2
ci)N(e|µei, σ

2
ei),

where (µci, σ
2
ci, µei, σ

2
ei), i = 1, 2, are unknown parameters. For the samples ci =

(ci1, ..., cini
) and ei = (ci1, ..., cini

) and priors

π(µci, σci) ∝
1

σci

, π(µei, σei) ∝
1

σci

,

A third tool in cost–effectiveness analysis is the cost–effectiveness acceptability curve

(CEAC) introduced by Van Hout et al. (10). This is a sampling evaluation of Î21, that

is, this notion is defined as the function

ϕ(R12) = Pr(Î12 ≥ 0|R12)

for R12 ≥ 0. We note that for a given R12,

ϕ(R12) =

∫

C

dē1dē2dc̄2dc̄1

where C is the set given by C =
{
(ē1, ē2, c̄1, c̄2) : R21(ē2 − ē1)− (c̄2 − c̄1) ≥ 0

}
.

The interpretation of the curve ϕ(R12) for a givenR12 ≥ 0 is the sampling probability

of the event C as the sample means ē1, ē2, c̄1, c̄2 vary in their sampling spaces. In the

literature this curve is utilized for choosing an “optimal” treatment: T1 is optimal if

ϕ(R12) ≥ 1/2. We note that this implies that treatment T1 is chosen regardless the

data ci = (ci1, ..., cini
) and ei = (ci1, ..., cini

) for i = 1, 2 we observed. This suggests that

CEAC is not an appropriate tool for choosing optimal treatment.

The INB is the most interesting tool although it is restricted to the case of com-

paring two treatments. For comparing more than two treatments a more general tool

is needed. This extension can be formulated using the notion of net benefit z of a

treatment T . This was introduced in Moreno et al. (11) and can be considered as an

extension of the INB12. For a given R > 0, the net benefit z is a random variable

defined by

z = R× e− c,

where R means the quantity the health provider is willing to pay for the unit of effec-

tiveness. This way, for a given set of alternative treatments T1, ..., Tk, k ≥ 2, and R > 0,

we have the net benefits z1, ..., zk and treatment comparisons is just the comparison of

the distributions of the net benefit of the treatments conditional on R. To do that

we need the use of a more sophisticated decision theory methodology that we briefly

describe in the next Section.

3 Cost–effectiveness analysis as a decision problem

A general theory for CEA follows by focusing this problem as a decision problem.

This is the aim of the book by Moreno, Vázquez–Polo and Negŕın (12).

Let us assume that for a given disease we have k ≥ 2 alternative treatments T1, ..., Tk

, and the problem is that of choosing an optimal treatment based on their random cost

and effectiveness (c, e). The element of this decision problem are i) a finite decision

space D = {d1, ..., dk}, where dj is the decision of choosing treatment Tj, ii) the re-

ward of each decision which is given by the probability distribution of (c, e), that is,
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{P (c, e|θ1), ..., P (c, e|θk}, where θj is a parameter tight to treatment Tj for j = 1, ..., k,
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ward of each decision which is given by the probability distribution of (c, e), that is,
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Example Let T1 and T2 be two treatments with the same deterministic cost c = 0, and

effectiveness given by a discrete variable with values 0, 1 and 2, as a health indicator

of bad, good and excellent status. The distribution of the effectiveness of treatment T1

is given by

P1(e1) =





0.1, if e1 = 0,

0.5, if e1 = 1,

0.4, if e1 = 2,

and the distribution of the effectiveness of treatment T2 by

P2(e2) =




0.3, if e1 = 0,

0.1, if e1 = 1,

0.6, if e1 = 2.

The rewards of treatments T1 and T2 are certainly different although for the utility

function U1(z|R) the utility of P1(z1|R) and P2(z2|R) is the same, that is, the expecta-

tions of z1 and z2 are EP1(z1|R) = EP2(z2|R) = 0.13R. This implies that T1 and T2 are

equivalent treatments for any R ≥ 0.

However, for the utility function U2(zi|R), the utility of P1(z1|R) is

Pr(Z1 ≥ Z2|R) = Pr(e1 ≥ e2) = 0.63,

and the utility of P2(z2|R) is Pr(Z2 ≥ Z1|R) = Pr(e2 ≥ e1) = 0.69.

Therefore, under the utility function U2(zi|R) treatment T2 is preferred to T1 for

any R ≥ 0.

4 The between sample heterogeneity in CEA

A difficulty in CEA comes from the fact that the samples of cost and effectiveness

ci and ei often come from h different Health care centers, so that they are an aggregate

of samples. That is ci = ∪h
j=1cij and ei = ∪h

j=1eij, where cij = (ci1, ..., cinij
) and

eij = (ei1, ..., einij
) are samples from hospital j. The distribution of (cij, eij) might

change as j changes, and hence we might have h different sampling distributions.

Therefore, the heterogeneity adds uncertainty on the model for c and e, and a statistical

procedure to account for this model uncertainty is called for.

Let {P (cij, eij|θj), j = 1, ..., h} be the sampling distributions conditional on the

centers, and {P (c, e|cij, eij), j = 1, ..., h} the predictive distributions of the centers.

The quantity of interest is the predictive distribution of (c, e) of the treatments and

hence for each treatment Ti the distributions {P (c, e|cij, eij), j = 1, ..., h} have to be

pooled. The statistical procedure for pooling these distribution is known as meta–

analysis.

Thus, we strongly recommend the use of meta–analysis in CEA for heterogenous

data.

the posterior distributions are given by

π(µci, σci|c̄i, s2i ) = N

(
µci|c̄i,

σ2
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ni

)
(nis

2
ci)

(n−1)/2

2(n−3)/2Γ
(
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2

) 1

σni
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exp
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−nis
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and a similar expression for P (e|ei) replacing in this expression s2ci with s2ei and c̄i by

ēi.

It can be seen that

U1(P (c|ci)|R) =

∫ ∫
c P (c, e|ci, ei)dcde = c̄i,

and analogously, U1(P (e|ei)|R) = ēi. Then, for a given R the optimal treatment is T1

if the inequality

R ē1 − c̄1 ≥ R ē2 − c̄2,

holds, and T2 otherwise.

Non linear utility functions have been considered in the literature. Let Z1 and Z2

be the random net benefit of treatments T1 and T2 with rewards P (z1|R) and P (z2|R).

A nonlinear utility function U2(z|R) is given by

U2(z1|R) = Pr(Z2 ≤ z1|R), U2(z2|R) = Pr(Z1 ≤ z2|R).

The optimality criterium is now that treatment T1 is optimal for a given R if the

inequality

Pr(Z1 ≥ Z2|R) ≥ Pr(Z2 ≥ Z1|R)

holds, and T2 otherwise. This nonlinear utility function is explored in Chapter 4 in

(12).

We note that the optimal treatment for the utility function U1(z|R) do not neces-

sarily coincide with the optimal treatment for U2(z|R) as the following simple example

shows.
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Example Let T1 and T2 be two treatments with the same deterministic cost c = 0, and

effectiveness given by a discrete variable with values 0, 1 and 2, as a health indicator

of bad, good and excellent status. The distribution of the effectiveness of treatment T1

is given by
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



0.1, if e1 = 0,

0.5, if e1 = 1,

0.4, if e1 = 2,

and the distribution of the effectiveness of treatment T2 by

P2(e2) =




0.3, if e1 = 0,

0.1, if e1 = 1,

0.6, if e1 = 2.
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and the utility of P2(z2|R) is Pr(Z2 ≥ Z1|R) = Pr(e2 ≥ e1) = 0.69.

Therefore, under the utility function U2(zi|R) treatment T2 is preferred to T1 for

any R ≥ 0.
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) and
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pooled. The statistical procedure for pooling these distribution is known as meta–
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Thus, we strongly recommend the use of meta–analysis in CEA for heterogenous

data.
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C/E–ratios alongside a clinical trial, Health Economics, 3 (5), 309–319 (1994)

Moreno, E. and Girón, F.J. and Vázquez–Polo, F.J. and Negŕın, M.A., Optimal health-

care decisions: comparing medical treatments on a cost–effectiveness basis, European

Journal of Operational Research, 204 (1), 180–187 (2010)

Moreno, E. Vázquez–Polo, F.J. and Negŕın, M.A.: Cost–effectiveness analysis of med-

ical treatments: a statistical decision theory approach. Chapman & Hall, London, in

press (2019)

Berger, J.O. and Bernardo, J.M. and Sun, D., The formal definition of reference priors,

Annals of Statistics, 37 (2), 905–938 (2009)

Hartigan, J. A., Partition Models, Communications in Statistics - Theory and Methods,

19, 2745–2756 (1990).

Barry, D. and Hartigan, J.A., Product partition models for change point problems,

Annals of Statistics, 20, 260–279 (1992)

Moreno, E., Girón, F.J., Mart́ınez, M.L., Vázquez–Polo, F.J. and Negŕın, M.A., Opti-

mal treatments in cost–effectiveness analysis in the precense of covariates: Improving

patient subgroup definition, European Journal of Operational Research, 226, 173–182

(2013)

Casella, G., Moreno. E., and Girón, F.J., Cluster Analysis, Model Selection, and Prior

Distributions on Models, Bayesian Analysis, 9 (3), 613–658 (2014)

Moreno, E. Vázquez–Polo, F.J. and Negŕın, M.A., Bayesian meta–analysis: The role of

the between sample heterogeneity, Statistical Methods for Medical Research, in press

(2017)

On the other hand, it might be that some of the models {P (cij, eij|θj), j = 1, ..., h}
have the same parameter. Thus, the point is to reduce the number of models by

clustering those that have the same parameter. This is known as probabilistic clustering.

A Bayesian approach to clustering the samples with the same distribution is based on

product partition models introduced by Hartigan (14) and further explored in (15), (16)

and (17).

Misleading meta–inferences can be obtained when clustering is ignored, as illustrated

in (18). Therefore, clustering the samples before to carried out a CEA is a good practice.
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