
The generalized discrete (r |p)-centroid problem
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Abstract

The (r |p)-centroid problem or leader-follower problem is generalized considering different
customer choice rules where a customer may use facilities belonging to different firms if
the difference in travel distance (or time) is small enough. Assuming essential goods,
some particular customer choice rules are analyzed. Linear programming formulations for
the generalized (r |Xp)-medianoid and (r |p)-centroid problems are presented and an exact
solution approach is applied. Some computational examples are included.
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1. Introduction

The (r |p)-centroid problem is a competitive location problem where two players, the
leader and the follower, enter the market sequentially and compete in providing goods and
services to customers. The leader enters the market first withp facilities and seeks to
minimize the maximum market share captured by a future competitor, called the follower.
The follower opensr facilities at the locations that maximize its market share. We consider
the case of essential goods, which means that demand has to be satisfied, and so customers
will visit at least one facility to obtain all the goods and services they need. As demand
is assumed to be essential, the objective of minimizing the maximum market share the
competitor can capture is equivalent to maximizing one’s own market share.
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The customer choice rule represents the behaviour of the customers. The binary rule
represents the “all or nothing” behaviour, according to which a customer uses the closest
facility, disregarding any other facility that is more distant, even if the difference in terms
of distance is very small. The ties among the competing firms are solved by a sharing
function. The binary choice rule assumes that customers are sensitive to any difference
in distances to the facilities. Under the partially binary choice rule, a customer visits the
closest facility for both firms. In this case, a customer could visit a facility belonging to
firm A and pass over a closer facility belonging to firmB but not the closest one to the
customer. According to the proportional choice rule, a customer visits all the facilities and
the proportion of the demand captured depends on the travel distance. Binary, partially bi-
nary and proportional rules, for essential and unessential demands, are studied in Hakimi
(1990). Some customer choice rules replace the hyper-sensitive consumer conduct im-
plicit in the binary model by a threshold-sensitive behaviour; in this case, a customer only
uses firmA exclusively if the distance from this customer to the competitors exceeds the
distance to firmA by an amount greater than or equal to a threshold orminimum sensibility
(Devletoglou, 1965; Devletoglou and Demetriou, 1967). An alternative to the binary and
proportional rules is a threshold-sensitive choice rule, under which the demand captured
by each firm in thedoubtful zoneis given by a non-increasing function of the travel dis-
tance, such as the decay functions used in the generalized coverage models (Berman et al.,
2003, 2010; Berman and Krass, 2002).

The (r |p)-centroid problem is a bi-level problem whose resolution, even for a moderate
size, requires significant computational effort. Some solution approaches can be found in
the literature. An exact algorithm to find the locations that maximize the expected profit
is presented in Gosh and Craig (1984). However, this approach consists basically of an
enumeration of the feasible solutions for the leader, and so this algorithm is not very use-
ful. A tabu search algorithm is proposed in Benati and Laporte (1994), and Davydov et
al. (2014). In Campos Rodrı́guez et al. (2010), the (r |p)-centroid is solved via an exact
algorithm based on the evaluation of the score (demand captured by the best locations for
the follower) of a sequence of leader’s solutions constrained to a family of good follower’s
solutions. During the process, the leader’s solutions with a score higher than the current
upper bound of the optimum are eliminated from the feasible set. Another exact algorithm
is presented in Aleekseeva et al. (2010). In this case, an alternating heuristic, used pre-
viously in Bhadury et al. (2003) to solve the centroid problem in the plane, is applied
to obtain initial solutions. At each iteration, the problem of the leader constrained to a
family of follower’s solutions is solved to obtain a lower bound of the optimum; then, for
the leader’s solution obtained, the problem of the follower is solved to obtain an upper
bound. The process ends when the best lower and upper bounds coincide. A branch-
and-cut algorithm to solve the (r |p)-centroid problem is proposed in Rodoredo and Pessoa
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(2013). A variable neighbourhood search is used in Davydov et al. (2014). Other heuristic
and exact methods to solve the discrete (r |p)-centroid problem are described in Alekseeva
and Kochetov (2013). Most of the mentioned references consider the binary and essential
scenario. Different scenarios are analyzed in Biesinger et al. (2015a, 2015b), where the
problem is solved by applying evolutionary algorithms.

In this paper we consider a general customer choice rule which incorporates the pos-
sibility of a customer visiting both firms if the distances to the competing firms are not
very different. This generalized choice function includes the binary rule as a particular
case. We use this general choice function to define the generalized discrete (r |p)-centroid
problem in the case of essential goods, and analyze some particular decay functions. Lin-
ear programming formulations for both problems (follower and leader), are given, and an
exact procedure is applied.

The remainder of this paper is organized as follows. The model is introduced in Sec-
tion 2 and an example is then described in Section 3. Integer programming formulations
are presented in Section 4. A solution approach is described in Section 5. Some compu-
tational examples are presented in Section 6 and, finally, the main conclusions drawn are
summarized in Section 7.

2. Problem statement

Let C = {ck : k ∈ [1..n]} be a finite set of demand points or clients andL = {l i : i ∈
[1..m]} be a finite set of potential locations for facilities. Every pointck ∈ C has a weight

wk = w(ck) which represents the demand atck. Let the total demand beWT =
n∑

k=1
wk. Let

dki = d(ck, l i) be the distance between pointck ∈ C and pointl i ∈ L, and, forck ∈ C and
X ⊆ L, dkX = minx∈X d(ck, x) is the distance betweenck andX.

We consider a market of essential goods, which means that the demand is totally sat-
isfied, that is, the sum of demands served by the firms operating in the market is equal to
the total existing demand.

Assume that two competing firms,A andB, operate in the market withp andr facilities
located atXp ⊂ L andYr ⊂ L, respectively. The demand at pointck captured by the firms
depends on the differenceδk = dkYr − dkXp. The market shares for firmsA andB are given,
respectively, byWA =WT −WB and

WB =WB(Xp,Yr) =
n∑

k=1

wk fk(δk) (1)

where fk(δ) is a non-negative and non-increasing function such that 0≤ fk(δ) ≤ 1 for
δ ≥ 0.
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Table 1 shows some different capture functions. For simplicity in the notation, indexk
has been eliminated from the table. The piecewise linear, piecewise concave and piecewise
convex functions, for three pieces, are plotted in Figure 1.

Table 1: Particular capture functions

Binary f (δ) =


1 if δ < 0
µ if δ = 0
0 if δ > 0

,

whereµ ∈ [0,1].

Step f (δ) =


1 if δ ≤ δ1
aq if δq < δ ≤ δq+1, 1 ≤ q ≤ Q
0 if δ > δQ+1

,

where 1> a1 > · · · > aQ > 0.

Continuous piecewise linear f (δ) =


1 if δ ≤ δ1
aqδ + bq if δq < δ ≤ δq+1, 1 ≤ q ≤ Q
0 if δ > δQ+1

,

where


1 = a1δ1 + b1

aqδq + bq = aq−1δq + bq−1, 1 < q < Q
0 = aQδQ+1 + bQ

.

For example, quadratic:

Continuous piecewise concave f (δ) =


1 if δ ≤ a

1−
(
δ−a
b−a

)2
if a < δ ≤ b

0 if δ > b

,

wherea < b.
For example, quadratic:

Continuous piecewise convex f (δ) =


1 if δ ≤ a(

b−δ
b−a

)2
if a < δ ≤ b

0 if δ > b
wherea < b.

Initially, no firm is operating in the market, firmA, the leader, wants to enter the market
with p facilities taking into account that firmB, the follower, will enter the market later,
installing r facilities at the locations where the market share ofB is maximum. FirmA
wants to determine thep locations that minimize the maximum demand that firmB can
capture.

If the leader hasp facilities open atXp, the problem of the follower is to determine the
setYr of r locations that maximize its market shareWB(Xp,Yr). An optimal solution to this
problem,Yr(Xp), is an (r |Xp)-medianoid. The problem of the leader is to determine the
setXp that minimizesWB(Xp,Yr(Xp)), that is, the setXp which minimizes the maximum
market share that the follower could achieve. An optimal solution to the problem of the
leader is an (r |p)-centroid. LetLp = {X ⊆ L : |X| = p}, for any natural numberp > 0.
Then, formally, the (r |p)-centroid problem or leader’s problem is the following minimax
problem

min
X∈Lp

max
Y∈Lr

WB(X,Y). (2)
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Figure 1: Examples of decay functions

That is,

min
X∈Lp

S(X) whereS(X) = max
Y∈Lr

WB(X,Y). (3)

For X ⊂ L, with |X| = p, S(X) is the score ofX. Problem (2) (or (3) ) is a bi-level
problem where the lower level problem is the (r |Xp)-medianoid problem and the upper
level problem is the (r |p)-centroid problem.

2.1. Some results
In this section, results are obtained for some common capture functions shown in Ta-

ble 1 and the casep = r. The propositions show situations in which the set of optimal
locations for the follower is the same as the set of optimal locations for the leader. In
particular, Proposition 4 shows that, if we consider the piecewise linear functions, under
certain conditions, thep-median is the solution for both the leader and the follower. In this
case, thep-median,XM, is a (p|p)-centroid and a (p|XM)-medianoid.

Proposition 1. Let, for every k,

fk(δ) = f (δ; a,b) =


1 if δ ≤ a

b−δ
b−a if a < δ ≤ b
0 if δ > b

where a≤ 0 < b. If, for a = a0, b = b0, set X is a(p|p)-centroid with Y(X) = X, then for
all 0 ≥ a ≥ a0 and b≥ b0 > 0, we have Y(X) = X and X is a(p|p)-centroid.
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P. Consider 0≥ a1 ≥ a0, b1 ≥ b0 > 0, and the customer choice rule defined by
fk(δ) = f (δ; at,bt), for t = 0,1 and for allk.

For Y ∈ Lp denoteδk = dkY − dkX and define∆t = WB(X,Y) −WB(X,X) for t = 0,1.
That is,

∆t =
(
1−

bt

bt − at

) ∑
δk≤at

wk −
( 1
bt − at

) ∑
at<δk<bt

wkδk −
( bt

bt − at

) ∑
δk≥bt

wk.

Then, fora = a0, b = b0, asX is a (p|p)-centroid withY(X) = X, we have that

∆0 =WB(X,Y) −WB(X,X) =
∑

k

wk fk(δk) −
∑

k

wk fk(0) =

∑
k

wk fk(δk) −
b0

b0 − a0

∑
k

wk ≤ 0

Consider now the difference (b1 − a1)∆1 − (b0 − a0)∆0.We obtain

(b1 − a1)∆1 − (b0 − a0)∆0 =
∑
δk≤a0

wk(−a1 + a0) +
∑

a0<δk≤a1

wk(−a1 + δk)+∑
b0≤δk<b1

wk(−δk + b0) +
∑
δk≥b1

wk(−b1 + b0).

Sincea0 ≤ a1 ≤ 0 < b0 ≤ b1, each addend in the previous summation is less than or equal
to zero, and we have that (b1 − a1)∆1 − (b0 − a0)∆0 ≤ 0, which implies,

∆1 ≤
b0 − a0

b1 − a1
∆0 ≤ 0.

From ∆1 ≤ 0 we conclude that, fora1, b1, WB(X,X) = max
Y∈Lp

WB(X,Y). On the other

hand,WB(X,X) =
b1

b1 − a1
WT is a lower bound of the optimum score. ThereforeS(X) =

min
Z∈Lp

max
Y∈Lp

WB(Z,Y).

�

Proposition 2. Let, for every k,

fk(δ) = f (δ; a,b) =


1 if δ ≤ a

1−
(
δ−a
b−a

)q
if a < δ ≤ b

0 if δ > b

where a≤ 0 < b and q is an even number greater than or equal to2. If, for b = b0, set
X with Y(X) = X is a (p|p)-centroid, then for all b≥ b0, we have Y(X) = X and X is a
(p|p)-centroid.
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P. Similarly to Proposition 1.
Consider the customer choice rule defined byfk(δ) = f (δ; a,bt), for all k andt = 0,1,

and suppose that, forb = b0, X is a (p|p)-centroid andY(X) = X. Let b1 ≥ b0.
Using the same notation as in Proposition 1, fort = 0,1 and for anyY ∈ Lp, we have

∆t =WB(X,Y) −WB(X,X) =

aq

(bt − a)q

∑
δk≤a

wk +
∑

a<δk<bt

wk

(
−

(δk − a)q

(bt − a)q
+

aq

(bt − a)q

)
+
(
− 1+

aq

(bt − a)q

) ∑
δk≥bt

wk.

Then
(b1 − a)q∆1 − (b0 − a)q∆0 =∑

b0≤δk<b1

wk

(
− (δk − a)q + (b0 − a)q

)
+
∑
δk≥b1

wk

(
− (b1 − a)q + (b0 − a)q

)
.

Sincea ≤ 0 < b0 ≤ b1, each addend in the previous summation is less than or equal to
zero, and we obtain (b1 − a)q∆1 − (b0 − a)q∆0 ≤ 0, which implies,

∆1 ≤
(b0 − a
b1 − a

)q
∆0 ≤ 0.

As in Proposition 1, from∆1 ≤ 0 we conclude that, forb = b1, WB(X,X) = S(X) =
min
Z∈Lp

max
Y∈Lp

WB(Z,Y).

�

Proposition 3. Let, for every k,

fk(δ) = f (δ; a,b) =


1 if δ ≤ a(

b−δ
b−a

)q
if a < δ ≤ b

0 if δ > b

where a≤ 0 < b and q is an even number greater than or equal to2. If, for a = a0, set X
with Y(X) = X is a (p|p)-centroid, then for all a with0 ≥ a ≥ a0, we have Y(X) = X and
X is a(p|p)-centroid .

P. Similarly to Propositions 1 and 2.
Consider the customer choice rule defined byfk(δ) = f (δ; at,b), for all k andt = 0,1.

For a = a0, let X be a (p|p)-centroid withY(X) = X. Suppose 0≥ a1 > a0. In this case,
for t = 0,1 and for anyY ∈ Lp, we have

∆t =WB(X,Y) −WB(X,X) =
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∑
δk≤at

wk

(
1−

bq

(b− at)q

)
+
∑

at<δk<b

wk

( (b− δk)q

(b− at)q
−

bq

(b− at)q

)
+
∑
δk≥b

wk

(
−

bq

(b− at)q

)
.

We obtain
(b− a1)

q∆1 − (b− a0)
q∆0 =∑

δk≤a0

wk

(
(b− a1)

q − (b− a0)
q
)
+
∑

a0<δk≤a1

wk

(
(b− a1)

q − (b− δk)
q
)
.

From 0≥ a1 > a0 it follows that (b−a1)q− (b−a0)q < 0. Froma0 < δk ≤ a1 < 0 it follows
that (b− a1)q− (b− δk)q ≤ 0. Therefore (b− a1)q∆1− (b− a0)q∆0 ≤ 0, as∆0 ≤ 0, it implies
∆1 ≤ 0, and we conclude thatS(X) =WB(X,X) = min

Z∈Lp
max
Y∈Lp

WB(Z,Y). �

Proposition 4. Consider the piecewise linear functions

fk(δ) = f (δ; ak,bk) =


1 if δ ≤ ak

bk−δ
bk−ak

if ak < δ ≤ bk

0 if δ > bk

where ak ≤ 0 < bk, for all k. Let Xw
M be the weighted p-median where demand point k

has a weight equal to
1

bk − ak
. If ak ≤ dki − dkXw

M
≤ bk for all k ∈ K, i ∈ I, then the

weighted p-median, XwM, is a (p|p)-centroid and a(p|Xw
M)-medianoid, and the optimum

score is S(Xw
M) =

∑
k

bk

bk − ak
wk.

P. If ak ≤ dki − dkXw
M
≤ bk for all k ∈ K, i ∈ I , then for allY ∈ Lp, ak ≤ dkY− dkXw

M
≤ bk

for all k ∈ K. ThereforeWB(Xw
M,Y) =

∑
k

wk
bk − δk
bk − ak

, whereδk = dkY − dkXw
M
, and we have

WB(Xw
M,Y) =

∑
k

wk
bk − δk
bk − ak

=
∑

k

wk
bk

bk − ak
−
∑

k

wk
δk

bk − ak
=

∑
k

wk
bk

bk − ak
−
(∑

k

wk
dkY

bk − ak
−
∑

k

wk

dkXw
M

bk − ak

)
=

W(Xw
M,X

w
M) −

(∑
k

wk
dkY

bk − ak
−
∑

k

wk

dkXw
M

bk − ak

)
.

From ∑
k

wk

dkXw
M

bk − ak
= min

Z∈Lp

∑
k

wk
dkZ

bk − ak
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it follows that ∑
k

wk
dkY

bk − ak
−
∑

k

wk

dkXw
M

bk − ak
≥ 0

and it is zero ifY = Xw
M. Therefore, for allY ∈ Lp, W(Xw

M,Y) ≤ W(Xw
M,X

w
M) and we

conclude thatXw
M is an (Xw

M |p)-medianoid. Moreover, asW(Xw
M,X

w
M) is a lower bound of

the optimal score, we conclude thatW(Xw
M,X

w
M) = min

X∈Lp
max
Y∈Lp

W(X,Y). That is, Xw
M is a

(p|p)-centroid.

�

Corollary 1. Consider the piecewise linear functions fk(d) = f (d; ak,bk) defined in Propo-
sition 4, where ak ≤ 0 < bk. If max

i,k
dki ≤ min{−ak,bk} for all k, then the weighted

p-median, XwM, is a (p|p)-centroid and a(p|Xw
M)-medianoid, and the optimum score is

S(Xw
M) =

∑
k

bk

bk − ak
wk.

P. If max
i,k

dki ≤ min{−ak,bk} then, for allX,Y ∈ Lp and allk, we haveak ≤ dkY−dkX ≤

bk. The result follows from Proposition 4.

�

Corollary 2. Consider the piecewise linear functions fk(d) = f (d; ak,bk) defined in Propo-
sition 4, where ak = a and bk = b for all k, with a≤ 0 < b. If max

i,k
dki ≤ min{−a,b}, then

the p-median, XM, is a (p|p)-centroid and a(p|XM)-medianoid, and the optimum score is

S(XM) =
b

b− a
WT where WT is the total demand. In particular, for the symmetric case,

a = −b, S(XM) =
1
2

WT .

P. It follows from Proposition 4.

�

3. An example

Consider the network represented in Figure 2, where the lengths are indicated beside
the edges and the demand at each node is shown inside the squares. Table 2 shows the
results forr = p = 2, using the binary choice rule, piecewise linear, concave and convex
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functions described in Table 1. Three pair of values fora andb are considered: (1)−a =
b = 2.86, (2)a = −2.86,b = 40, and (3)a = −40,b = 2.86. For each pair of values, two
cases are solved: (a) no restrictions, coincident locations are allowed, and (b) coincident
locations are not allowed. The first column indicates the customer choice rule used to
obtain the locations. The second and fourth columns show the optimal locations for each
case. Column 6 shows the demand captured by the follower if the locations for leader and
follower coincide. In some cases, multiple optimal solutions exist. The last row shows the
results for a scenario in which different choice functions for different demand points are
considered, and where symmetric piecewise linear, concave and convex decay functions
are used.

The results obtained show that symmetric and asymmetric pro follower choice rules
favour coincident locations, and so the follower opens one or both facilities at a point
previously selected by the leader. For asymmetric pro leader decay functions, coincidences
do not occur. For anyX, WB(X,X) provides a lower bound of the scoreS(X). The most
advantageous scenario for the follower is given by the concave asymmetric pro follower
decay function. From Corollary 2, we deduce that, in the linear case, for a sufficiently
large−a andb, the 2-median,{1,5}, is a (2|2)-centroid and the optimum score is 31b

b−a.

Table 2:WB value and optimal locations (in some cases there are multiple solutions)
Rule Coincidences Coincidences X = Y

allowed not allowed
X; Y WB = S(X) X; Y WB = S(X) WB

Binary (µ = 0.5) 1,7; 1,3 16.50 1,3; 5,6 13 15.50
−a = b = 2.86 (Symmetric)

Linear 1,7; 1,11 16.50 1,3; 5,6 13 15.50
Concave 1,3; 1,3 23.25 1,3; 5,6 13 23.25
Convex 1,3; 1,5 14 1,3; 5,6 13 7.75

a = −2.86,b = 40 (Asymmetric pro follower)
Linear 1,3; 1,3 28.93 1,5; 2,8 22.72 28.93

Concave 1,3; 1,3 30.86 1,2; 5,9 26.23 30.86
Convex 1,3; 1,3 27.00 1,5; 2,8 18.31 27.00

a = −40,b = 2.86 (Asymmetric pro leader)
Linear 1,3; 5,8 9.88 1,3; 5,8 9.88 2.07

Concave 1,3; 5,6 11.16 1,3; 5,6 11.16 0.14
Convex 2,5; 3,7 7.30 2,5; 3,7 7.30 4.00

Symmetric mixed scenario
Linear-Concave-Convex 1,5; 3,8 14.77 1,5; 3,8 14.77 14
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Figure 2: Network of Example
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4. Linear formulations

4.1. The(r |Xp)-medianoid problem

The problem of the follower is the (r |Xp)-medianoid problem. Given the position of the
leader, the follower wishes to open facilities at the locations which provide the maximum
market share. In order to formulate this problem, we introduce the following variables

yi =

{
1 i f the follower opens a facility at pointl i
0 otherwise

(4)

zki =

{
1 i f clientck visits a facility atl i
0 otherwise

(5)

for i ∈ [1..m], k ∈ [1..n].
The problem can be formulated as follows

max
m∑

i=1

n∑
k=1

hkizki

subject to:
m∑

i=1
yi = r

m∑
i=1

zki ≤ 1 k ∈ [1..n]

zki ≤ yi i ∈ [1..m], k ∈ [1..n]
zki, yi ∈ {0,1} i ∈ [1..m], k ∈ [1..n]

(6)

wherehki = wk fk(δki) andδki = dki − dkXp, i ∈ [1..m], k ∈ [1..n].
The objective function represents the demand captured by the follower. The first con-

straint states that the follower opensr facilities. Constraint
m∑

i=1
zki ≤ 1 means that each

client k (demand pointk) patronizes at most one follower’s facility. Constraintxki ≤ yi

indicates that a clientk patronizes a facility at locationl i only if a facility is open at that
point. This model hasm(1+ n) variables and 1+ n(1+m) constraints. Observe that the in-
tegrality constraints forzki can be relaxed, in which casezki is interpreted as the proportion
of demand atck captured by the follower at locationl i.

This optimization problem has good properties with respect to the performance of
the greedy algorithm (which provides a lower bound) and the relaxed linear programming
problem (which gives an upper bound). An alternative formulation with a lower dimension
is described in Berman and Krass (2002). For anyk, considerµk j, j ∈ [1..mk], the nonzero
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values ofhki with µk j indexed in increasing order. Fork ∈ [1..n] and j ∈ [1..mk], define the
sets

Lk j = {l i ∈ L : hki = µk j}

Ik j = {i ∈ [1..m] : l i ∈ Lk j}.
(7)

SetLk j contains the locations inL that capture the clientck at levelµk j. SetIk j is the set of
indexes of points inLk j.

Now zk j = 1 if client ck is captured by a follower’s facility at levelµk j andzk j = 0
otherwise. Then, the (r |Xp)-medianoid problem can be formulated as follows

max
n∑

k=1

mk∑
j=1
µk jzk j

subject to:
m∑

i=1
yi = r

mk∑
j=1

zk j ≤ 1 k ∈ [1..n]

zk j ≤
∑

i∈Ik j

yi k ∈ [1..n], j ∈ [1..mk]

yi , zk j ∈ {0,1} j ∈ [1..mk], k ∈ [1..n]

(8)

This model hasm+
n∑

k=1
mk variables and 1+ n+

n∑
k=1

mk constraints.

4.2. The(r |p)-centroid problem

The problem of the leader is the (r |p)-centroid problem. To formulate this problem we
introduce the following variables

xi =

{
1 i f the leader opens a facility at pointl i
0 otherwise

(9)

uki =

{
1 i f clientck visits a leader facility located at pointl i
0 otherwise

(10)
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wherei ∈ [1..m], k ∈ [1..n]. Let J = [1..
(
m
r

)
] be the index set corresponding toLr . We can

formulate the (r |p)-centroid problem as follows

min W
subject to:
m∑

i=1
xi = p

m∑
i=1

n∑
k=1

hj
kiuki ≤W j ∈ J

m∑
i=1

uki = 1 k ∈ [1..n]

uki ≤ xi i ∈ [1..m], k ∈ [1..n]
uki, xi ∈ {0,1} i ∈ [1..m], k ∈ [1..n]

(11)

where

hj
ki = wk fk(δ

j
ki) andδ j

ki = dk(Yj) − dki. (12)

Expression (12) represents the demand atck captured by the follower if he/she has
facilities atYj and the closest leader’s facility to clientck is located at locationl i. Observe

that constraint
m∑

i=1
uki = 1 implies that every client is assigned to a facility but the leader

may not capture demand from this demand point. This model hasm(1+ n) variables and
1+ n(1+m) +

(
m
r

)
constraints. Integrality constraints foruki can be relaxed.

5. An exact solution approach

Some exact procedures proposed in the literature to solve the binary discrete (r |p)-
centroid (Alekseeva et al., 2010; Campos Rodrı́guez et al., 2010; Rodoredo and Pessoa,
2013) can be adapted to solve the discrete (r |p)-centroid for other customer choice func-
tions. The following algorithm allows us to obtain optimal solutions for the (r |p)-centroid
problem. The basic idea is to calculate lower and upper bounds of the optimumW∗ until
these two bounds coincide. At each iteration, Problem (11) is modified by replacing the
set of follower’s feasible solutions,Lr , by a subsetF ⊂ Lr . This problem is solved to
obtain a solutionX and the corresponding scoreSF (X).

Algorithm:

Step 1Initialization.
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1.1 Selects feasible leader’s solutionsXi , i = 1, ..., s. Solve the follower’s problem
for Xi, i = 1, ..., s. An upper bound ofW∗ is W = min

i
S(Xi). Let X∗ = X with

S(X) =W.

1.2 LetF = {Yi}
q
i=1 be the initial family of good follower candidates. SetW = 0

Step 2Iterations.Repeat, untilW =W.

2.1 Solve the leader’s problem usingF insteadLr in (11). Let X be the optimal
solution obtained.

If the optimal value obtainedSF (X) verifiesSF (X) > W then doW = SF (X).
If W = W, thenW∗ = W = W is the optimal value andX∗ = X is the optimal
set of locations for the leader.

2.2 Solve the follower’s problem forX. If S(X) < W then setW = S(X) and
X∗ = X. If W = W, thenW∗ = W = W is the optimal value andX∗ is the
optimal set of locations for the leader.

SetF = F ∪ {Y(X)}, , whereY(X) is the (r |X)-medianoid.

6. Computational example

We now apply the algorithm described in Section 5 to solve the (r |p)-centroid problem,
or leader’s problem, for continuous piecewise linear decay functions in symmetric and
asymmetric cases. We also analyze the binary case, considering that ties can be solved by
assigning half of the demand to each player (sharing coefficient to follower equal toµ =
0.5). For the linear case, we choose the extremes of the interval,a andb, takinga = −α×ρ
andb = β × ρ, whereα, β > 0 andρ is the average of the absolute values|dki − dk j| with
k ∈ K, i, j ∈ I andi , j. In the computational examples, we takeα, β = 0.10, 0.25, 0.50.

We take the data used in Alekseeva et al. (2010), whereC = L, n = m = 100, and the
points are chosen at random with a uniform distribution in a square measuring 7000×7000.
Two cases for the demand are considered, case (a)wk = 1 for all k (instances 1 to 10), and
(b) the demand is generated by a uniform distribution in [0,200] (instances 11 to 20).

In order to limit the computational cost, we introduce a stop rule to stipulate the maxi-
mum number of iterations. The algorithm stops when (a)W −W ≤ γ, whereγ is a small
number, and whereW andW are, respectively, a lower and upper bounds of the optimum
W∗; or (b) the maximum number of iterations is reached. IfW = W the optimum is ob-
tained. If p = r a lower bound is obtained when we consider the same locations for both
competitors. In the computational examplesγ is 0.1% of the total demand.
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As the two initial leader’s solutions, we consider thep-median and the solution ob-
tained via the alternating algorithm. In this approach, each player (leader and follower)
reacts to the actions of the competitor by choosing the locations which maximize its profit,
that is, both players behave as followers. An alternating heuristic is used in Bhadury et
al. (2003) to solve the centroid problem in the plane. This is also used in Alekseeva et
al. (2010) to find the initial leader’s solutions in a discrete space. The initial family of
follower’s solutions is composed of the (r |X)- medianoid whenX is the p-median, the
r-median, and the (r |X)-medianoid whenX is the solution obtained via the alternating
heuristic.

The computational results are shown in Tables 3 to 7, each of which corresponds to spe-
cific values ofα andβ. The first column represents the instance, the AH column shows the
W value provided by the alternating heuristic and theW∗ column shows the bestW value
obtained with the exact algorithm modified with the introduction of the above-described
stop rule. The percentages of demand captured by the follower are shown in brackets.

Column %Error shows, for each instance, the values 100×
W−W

WT
, whereWT represents

the total demand. Column Iter1 shows the iteration in which the best objective value was
found. Column Iter2 shows the iteration at which the algorithm stopped. The last column
shows the elapsed time in seconds consumed to find the best solution.

These computational results were obtained using a PC Intel(R)Core(TM) i7-2700K
CPU 3.50GHz, RAM 16GB. The solutions were obtained using CPLEX solver in GAMS.

The results forp = r = 5 and for the different scenarios are shown in Subsections 6.1
(for continuous piecewise functions) and 6.2 (for the binary choice rule). Subsection 6.3
shows, for several values ofp = r, the percentage of demand captured by the follower
and the iteration at which the best W value was reached in the piecewise linear case with
α = 0.10.

6.1. Results for piecewise linear decay functions

Tables 3, 4 and 5, show the results for the symmetric case withα = β = 0.10, 0.25, 0.50,
respectively. We observe that, in the symmetric case,W∗ decreases whenα increases (ex-
cept for instance 11 andα = 0.25 where %Error= 0.27). Although it is not presented in a
table, the caseα = β = 0.75 was also solved. In this scenario, the optimum score for all
instances corresponds to coincident locations, that is, leader and follower capture 50% of
total demand. In the tables, the highest value of %Error is indicated in bold. In no case
is this value higher than 0.33 (in other words,W −W is at most 0.33% of total demand).
The number of iterations required to find the best solution (Iter1) decreases whenα = β
increases, that is, when thesharing interval increases. According to Corollary 2, for suf-
ficiently large values ofα, the 5-median is a (5|5)-centroid. For low values ofα = β, some
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instances requires great computational effort, due to the difficulty of solving the problem
of the leader at each iteration. Forα = β = 0.10, the AH solution was improved for all
instances except for instance 20. Forα = β = 0.25, an improvement was obtained for 13
of the 20 instances, while forα = β = 0.50 the AH solution was the best solution found in
17 of the 20 instances.

In the asymmetric case, withα = 0.10, β = 0.25, for all instances, the solution is the
(5|5)-median, which was obtained at iteration Iter1= 0. In this case, leader and follower
open facilities at the same locations. Therefore, according to Proposition 1, forα ≤ 0.10
andβ ≥ 0.25, this solution is optimal. Table 6 shows the results forα = 0.25, β = 0.10, in
this case the maximum number of iterations allowed is 50. The AH solution was improved
in all cases except for instance 4.

Table 3: Piecewise linearα = β = 0.10
Instance Linearα = β = 0.10
p = r = 5 AH W∗ %Error Iter1 Iter2 Time (sc)

1 52.503 51.808 0.03 22 22 203.297
2 53.691 52.241 0.11 23 100 326.995
3 53.849 53.136 0.10 33 100 1999.205
4 52.871 52.442 0.12 22 100 534.764
5 53.453 52.737 0.10 32 100 970.432
6 51.952 51.154 0 13 13 108.840
7 55.220 52.105 0.12 25 100 465.287
8 52.775 52.109 0.18 17 100 178.092
9 52.842 52.080 0.17 18 100 263.202
10 53.113 52.816 0.12 11 100 58.405
11 4407.669 4397.829 (50.61%) 0.18 8 100 23.448
12 5720.181 5618.586 (53.41%) 0.08 42 70 4576.865
13 5068.399 4897.234 (52.37%) 0.03 9 33 152.631
14 5175.613 5144.412 (51.82%) 0.11 13 100 102.367
15 5632.190 5485.154 (53.55%) 0.05 35 49 1329.587
16 5206.571 5030.136 (52.85%) 0.06 37 41 1462.280
17 6065.238 5920.656 (52.87%) 0.09 38 40 1381.901
18 5171.269 5066.573 (53.01%) 0.08 10 41 53.009
19 5707.178 5532.966(53.22%) 0.07 45 57 5980.559
20 5232.133 5232.133(51.16%) 0.26 0 100 0

In order to illustrate the results, we present some figures corresponding to instances
3 and 13. In these two instances, the demand points are the same but the distribution of
the demand is different. Figure 3 represents the distribution of the demand for instance
13. Each demand pointk is represented by a circle whose radius is proportional to its
demand. In Figures 4 to 10, the leader’s locations are represented by squares and those
of the follower, by asterisks. Figure 4 shows the solution for instance 3. In this case, the
demand for each client is equal to one andα = β = 0.10. Figures 5, 6 and 7 show the
solution for instance 13 in the symmetric case withα = 0.10, α = 0.25, andα = 0.50,
respectively. Observe that for instances 3 and 13, and forα = 0.10 a coincidence occurs but
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Table 4: Piecewise linearα = β = 0.25
Instance Linearα = β = 0.25
p = r = 5 AH W∗ %Error Iter1 Iter2 Time (sc)

1 51.721 51.473 0.11 4 100 10.241
2 51.183 50.680 0.03 4 4 9.657
3 52.085 51.437 0.17 16 100 189.684
4 50.633 50.227 0 6 6 18.789
5 51.305 51.305 0.14 0 100 0
6 51.035 50.339 0.06 3 3 7.483
7 51.582 51.490 0.10 11 100 71.293
8 51.427 50.880 0 6 6 47.95
9 50.965 50.965 0.17 0 100 0
10 51.212 51.212 0.13 0 100 0
11 4415.994 4415.994(50.82%) 0.27 0 100 0
12 5413.952 5413.952 (51.46%) 0.10 0 19 0
13 4732.596 4694.718 (50.20%) 0.05 2 3 8.163
14 5082.924 5058.789 (50.96%) 0.10 9 10 40.139
15 5249.534 5249.534 (51.25%) 0.14 0 100 0
16 4947.429 4929.889 (51.79%) 0 24 24 509.169
17 5834.244 5755.125 (51.39%) 0 17 17 153.789
18 4909.392 4899.036 (51.26%) 0.09 11 12 57.660
19 5419.721 5412.545 (52.06%) 0.08 17 22 363.160
20 5147.021 5147.021 (50.33%) 0.33 0 100 0

Table 5: Piecewise linearα = β = 0.50
Instance Linearα = β = 0.50
p = r = 5 AH W∗ %Error Iter1 Iter2 Time (sc)

1 50.334 50.334 0.18 0 100 0
2 50.032 50.032 0.03 0 0 0
3 50.178 50.178 0.18 0 100 0
4 50.045 50.045 0.05 0 0 0
5 50.392 50.392 0.32 0 100 0
6 50.047 50.047 0.05 0 100 0
7 50.121 50.121 0.12 0 100 0
8 50.111 50.111 0.11 0 0 0
9 50.000 50.000 0 0 100 0
10 50.723 50.723 0.22 0 100 0
11 4362.673 4362.673 (50.21%) 0.21 0 0 0
12 5268.607 5268.607 (50.08%) 0.08 0 0 0
13 4675.500 4675.500 (50%) 0 0 0 0
14 4963.500 4963.500 (50%) 0 0 0 0
15 5185.124 5144.842 (50.23%) 0.15 0 100 0
16 4787.602 4774.220 (50.16%) 0 0 2 0
17 5599.500 5599.500 (50%) 0 0 0 0
18 4830.291 4830.291 (50.54%) 0.07 0 2 0
19 5365.244 5353.006 (51.49%) 0.07 1 8 1.881
20 5116.786 5116.786 (50.04%) 0.04 0 0 0
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Table 6: Piecewise linearα = 0.25, β = 0.10
Instance Linearα = 0.25 β = 0.10
p = r = 5 AH W∗ %Error Iter1 Iter2 Time (sc)

1 44.688 43.946 0.19 40 50 2280.811
2 43.301 43.301 0.12 0 50 0
3 45.979 44.739 0.14 20 50 858.145
4 45.684 43.473 0.12 30 50 1023.665
5 45.549 45.074 0.23 44 50 3561.767
6 43.965 42.531 0.08 38 38 1871.418
7 47.555 44.808 0.26 46 50 3694.808
8 46.873 44.297 0.11 43 50 2186.552
9 46.080 44.830 0.11 42 50 2947.284
10 45.189 44.070 0.15 45 50 2470.528
11 3829.513 3817.158 (43.93%) 0.10 10 38 52.877
12 4980.316 4860.531 (46.20%) 0.85 24 50 1007.607
13 4187.448 4110.376 (43.96%) 0.09 20 31 477.543
14 4291.753 4261.193 (42.92%) 0 25 25 844.550
15 4713.435 4544.743 (44.37%) 0.18 17 50 368.885
16 4468.938 4333.618 (45.53%) 1.08 7 50 56.068
17 5090.326 5015.803 (44.79%) 0.27 21 50 490.766
18 4178.370 4126.638 (43.18%) 0.07 27 34 1109.047
19 4929.027 4867.981 (46.83%) 1.58 5 50 21.419
20 4586.127 4511.942 (44.12%) 0.15 31 50 697.893

in different places. On the other hand, in Figures 5, 6 and 7, we see that asα = β increases
the follower locates its facilities closer to the leader. Forα = β = 0.50 both competitors
choose the same locations, a 5-median. Figure 8 shows the solution obtained forα = 0.25,
β = 0.10 (asymmetric in favour of the leader). Observe that forα = 0.25,β = 0.10, leader
and follower choose different locations. Forα = 0.10,β = 0.25 (asymmetric in favour of
the follower), the solution for leader and follower is a 5-median.

6.2. Results for the binary case

In this subsection we present some results for the binary rule forp = r = 5. Table 7
shows the results for the case in which coincident locations are allowed and where, in case
of tie (dkY = dkX), the follower capturesµ × wk, where 0≤ µ ≤ 1. We considerµ = 0.5.
When p = r, a lower bound of the optimal capture for the follower is 0.5WT . The last
column of the table shows the optimal value,W∗

0, for the binary case oriented to the leader
(µ = 0), these values having been taken from Alekseeva et al. (2010).

In this scenario, for all instances, the bestW value was obtained before 50 iterations,
the greatest computational effort was required for instance 12, when 44 iterations were
required to obtain the best solution. If we compare this with the results for the symmetric
linear case whenα = β = 0.10, we see that, except for instances 11 and 20, the upper
bound of the error (column %Error) for the binary case is significantly higher, as a conse-
quence of the discontinuity of the binary decay function.
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Figure 3: Demand distribution. Instance 13

Figure 4: Linearα = β = 0.10. Instance 3
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Figure 5: Linearα = β = 0.10. Instance 13
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Figure 6: Linearα = β = 0.25. Instance 13
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Figure 7: Linearα = β = 0.50. Instance 13
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Figure 8: Linearα = 0.25 β = 0.10. Instance 13
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Table 7: Binaryµ = 0.50
Instance Binaryµ = 0.50
p = r = 5 AH W∗ %Error Iter1 Iter2 Time (sc) W∗0

1 54 53 0.5 9 50 49.884 53
2 54 53 0.5 10 50 50.449 52
3 56 55 1 4 50 21.050 55
4 55 54 1 34 50 1318.348 53
5 55 53 0.5 11 50 109.520 53
6 54 53 0.5 24 50 518.872 53
7 55 53 0.5 22 50 489.855 53
8 56 53 0.5 32 50 961.745 52
9 53 53 0.5 0 50 0 53
10 54 54 0.5 0 50 0 53
11 4847 4550 (52.36%) 0.098 10 31 43.390 4550 (52.36%)
12 5929 5698 (54.16%) 1.188 44 50 3002.127 5698 (54.16%)
13 5321 5222 (55.85%) 2.529 24 50 1325.695 5136 (54.92%)
14 5335 5335 (53.74%) 0.524 0 50 0 5249 (52.88%)
15 5776 5675 (55.40%) 1.611 29 50 1191.760 5649 (55.15%)
16 5274 5173.5 (54.35%) 0.888 24 50 652.883 5025 (52.79%)
17 6333 6046 (53.99%) 0.455 33 50 986.178 6046 (53.99%)
18 5232 5153 (53.92%) 0.544 30 50 912.467 5153(53.92%)
19 5975 5696 (54.79%) 1.462 29 50 2476.411 5696 (54.79%)
20 5655 5392.5 (52.73%) 0 34 34 727.762 5303 (51.86%)

Figure 9: Binaryµ = 0 (oriented to leader). Instance 13
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Figure 10: Binaryµ = 0.5. Instance 13
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6.3. Comparative analysis for different scenarios and values of p

In the results presented in Sections 6.1 and 6.2 forp = r = 5, we observed that there
are three locations which appear in all the leader solutions for the symmetric scenarios
α = β = 0.10,0.25,0.50, and the asymmetric caseα = 0.10, β = 0.25. Two of these
points appear in all scenarios except that of the binary oriented to the leader. One of these
points appears in the solution for all scenarios analyzed. Other points coincide in the
solution of three of these scenarios. This finding suggests that there are points which are
goodlocations for the leader in most cases.

Figure 11 shows the average demand captured by the follower (as a percentage) and the
Iter1 value for 1≤ p = r ≤ 20 in the symmetric linear case withα = 0.10. As the follower
can open facilities at the same locations as the leader, the percentage of demand captured
is always greater than or equal to 50%. For the scenarios analyzed, this percentage is
less than 52.4% in all cases. The number of iterations required to reach the best objective

value is always less than 32. The error (percentage), defined as 100×
W−W
WT

, is less than
0.6 in all cases, with lower values for small values ofp. The average error is 0.343%. As
p increases, so does the number of coincident locations, while the percentage of demand
captured by the follower tends to 50%. This behaviour of the demand captured by the
follower differs from that observed for the binary case oriented to the leader; in this binary
scenario, the market share of the follower for the highest values ofp is significantly less
than 50% (Alekseeva et al. 2010).
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Figure 11: Symmetric caseα = β = 0.10
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7. Conclusions

In this paper we generalize the discrete (r |p)-centroid problem to consider customer
choice rules defined by generic decay functions. A customer may visit the closest facility
of each of two competitors, leader and follower, using at each of these facilities an amount
of buying power which depends on the difference in travel distance (or time) to the closest
competing facilities. Forp = r, we obtain interesting theoretical results for piecewise
linear, concave and convex decay functions. In particular, for continuous piecewise linear
functions, we prove that under certain conditions, thep-median is a (p|p)-centroid and the
optimal score corresponds to coincident locations, that is, leader and follower open their
facilities at the same places.

For particular piecewise linear decay functions, our computational examples show that
when the sharing zone is expanded the follower tends to locate facilities closer to those of
the leader and the optimal score decreases. The solution consisting of coincident locations
provides a lower bound of the optimum, while an upper bound was obtained via an alter-
nating heuristic. A comparison of the results for 1≤ p = r ≤ 20 suggests that whenp = r
increases the demand captured by the follower tends to 50% of the total demand.

To obtain the solutions presented, we applied an exact procedure which requires the
resolution of a constrained leader’s problem at each iteration. As the number of iterations
increases, this problem becomes more complex and the computational effort required in-
creases significantly. This outcome suggests that heuristic procedures should be used to
solve the (r |p)-centroid problem.
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